Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62197 by maxmathsup by imad last updated on 17/Jun/19

calculate ∫∫_([0,1]^2 )     (√(x^2 +y^2 ))sin((√(x^2 +y^2 )))dxdy

$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{sin}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right){dxdy} \\ $$

Commented by mathmax by abdo last updated on 21/Jun/19

let use the diffeomorphism x =rcosθ  and y =rsinθ  0≤x≤1  and 0≤y≤1 ⇒0≤x^2  +y^2 ≤2 ⇒0≤r^2 ≤2 ⇒0≤r≤(√2)   A=∫∫_([0,1]^2 )    (√(x^2  +y^2 ))sin((√(x^2 +y^2 )))dxdy =∫∫_(0≤r≤(√2)  and 0≤θ≤(π/2))    r sin(r)rdrdθ  =∫_0 ^(√2)   r^2 sin(r)dr ∫_0 ^(π/2)  dθ =(π/2) ∫_0 ^(√2)  r^2 sin(r)dr      by parts  u=r^2  and v^′  =sinr  ∫_0 ^(√2)  r^2  sin(r)dr =[−r^2 cos(r)]_0 ^(√2)  +∫_0 ^(√2) 2r cosrdr  =−2cos((√2)) +2 {  [r sin(r)]_0 ^(√2)   −∫_0 ^(√2)   sinr dr}  =−2cos((√2)) +2{  (√2)sin((√2)) +[cosr]_0 ^(√2) }  =−2cos((√2)) +2(√2)sin((√2)) +2(cos((√2))−1) ⇒  A =(π/2){ −2cos((√2))+2(√2)sin((√2)) +2 cos((√2))−2}=π{(√2)sin((√2))−1} .

$${let}\:{use}\:{the}\:{diffeomorphism}\:{x}\:={rcos}\theta\:\:{and}\:{y}\:={rsin}\theta \\ $$$$\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{and}\:\mathrm{0}\leqslant{y}\leqslant\mathrm{1}\:\Rightarrow\mathrm{0}\leqslant{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{2}\:\Rightarrow\mathrm{0}\leqslant{r}^{\mathrm{2}} \leqslant\mathrm{2}\:\Rightarrow\mathrm{0}\leqslant{r}\leqslant\sqrt{\mathrm{2}}\: \\ $$$${A}=\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{sin}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right){dxdy}\:=\int\int_{\mathrm{0}\leqslant{r}\leqslant\sqrt{\mathrm{2}}\:\:{and}\:\mathrm{0}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}}} \:\:\:{r}\:{sin}\left({r}\right){rdrd}\theta \\ $$$$=\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:\:{r}^{\mathrm{2}} {sin}\left({r}\right){dr}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{d}\theta\:=\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:{r}^{\mathrm{2}} {sin}\left({r}\right){dr}\:\:\:\:\:\:{by}\:{parts}\:\:{u}={r}^{\mathrm{2}} \:{and}\:{v}^{'} \:={sinr} \\ $$$$\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:{r}^{\mathrm{2}} \:{sin}\left({r}\right){dr}\:=\left[−{r}^{\mathrm{2}} {cos}\left({r}\right)\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:+\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \mathrm{2}{r}\:{cosrdr} \\ $$$$=−\mathrm{2}{cos}\left(\sqrt{\mathrm{2}}\right)\:+\mathrm{2}\:\left\{\:\:\left[{r}\:{sin}\left({r}\right)\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:\:−\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:\:{sinr}\:{dr}\right\} \\ $$$$=−\mathrm{2}{cos}\left(\sqrt{\mathrm{2}}\right)\:+\mathrm{2}\left\{\:\:\sqrt{\mathrm{2}}{sin}\left(\sqrt{\mathrm{2}}\right)\:+\left[{cosr}\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \right\} \\ $$$$=−\mathrm{2}{cos}\left(\sqrt{\mathrm{2}}\right)\:+\mathrm{2}\sqrt{\mathrm{2}}{sin}\left(\sqrt{\mathrm{2}}\right)\:+\mathrm{2}\left({cos}\left(\sqrt{\mathrm{2}}\right)−\mathrm{1}\right)\:\Rightarrow \\ $$$${A}\:=\frac{\pi}{\mathrm{2}}\left\{\:−\mathrm{2}{cos}\left(\sqrt{\mathrm{2}}\right)+\mathrm{2}\sqrt{\mathrm{2}}{sin}\left(\sqrt{\mathrm{2}}\right)\:+\mathrm{2}\:{cos}\left(\sqrt{\mathrm{2}}\right)−\mathrm{2}\right\}=\pi\left\{\sqrt{\mathrm{2}}{sin}\left(\sqrt{\mathrm{2}}\right)−\mathrm{1}\right\}\:. \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com