Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62197 by maxmathsup by imad last updated on 17/Jun/19

calculate ∫∫_([0,1]^2 )     (√(x^2 +y^2 ))sin((√(x^2 +y^2 )))dxdy

calculate[0,1]2x2+y2sin(x2+y2)dxdy

Commented by mathmax by abdo last updated on 21/Jun/19

let use the diffeomorphism x =rcosθ  and y =rsinθ  0≤x≤1  and 0≤y≤1 ⇒0≤x^2  +y^2 ≤2 ⇒0≤r^2 ≤2 ⇒0≤r≤(√2)   A=∫∫_([0,1]^2 )    (√(x^2  +y^2 ))sin((√(x^2 +y^2 )))dxdy =∫∫_(0≤r≤(√2)  and 0≤θ≤(π/2))    r sin(r)rdrdθ  =∫_0 ^(√2)   r^2 sin(r)dr ∫_0 ^(π/2)  dθ =(π/2) ∫_0 ^(√2)  r^2 sin(r)dr      by parts  u=r^2  and v^′  =sinr  ∫_0 ^(√2)  r^2  sin(r)dr =[−r^2 cos(r)]_0 ^(√2)  +∫_0 ^(√2) 2r cosrdr  =−2cos((√2)) +2 {  [r sin(r)]_0 ^(√2)   −∫_0 ^(√2)   sinr dr}  =−2cos((√2)) +2{  (√2)sin((√2)) +[cosr]_0 ^(√2) }  =−2cos((√2)) +2(√2)sin((√2)) +2(cos((√2))−1) ⇒  A =(π/2){ −2cos((√2))+2(√2)sin((√2)) +2 cos((√2))−2}=π{(√2)sin((√2))−1} .

letusethediffeomorphismx=rcosθandy=rsinθ0x1and0y10x2+y220r220r2A=[0,1]2x2+y2sin(x2+y2)dxdy=0r2and0θπ2rsin(r)rdrdθ=02r2sin(r)dr0π2dθ=π202r2sin(r)drbypartsu=r2andv=sinr02r2sin(r)dr=[r2cos(r)]02+022rcosrdr=2cos(2)+2{[rsin(r)]0202sinrdr}=2cos(2)+2{2sin(2)+[cosr]02}=2cos(2)+22sin(2)+2(cos(2)1)A=π2{2cos(2)+22sin(2)+2cos(2)2}=π{2sin(2)1}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com