Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 62200 by maxmathsup by imad last updated on 17/Jun/19

calculate lim_(x→0)   ((ln(1+x+sinx)−ln(1+sin(2x)))/x^2 )

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{ln}\left(\mathrm{1}+{x}+{sinx}\right)−{ln}\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\right)}{{x}^{\mathrm{2}} } \\ $$

Commented by maxmathsup by imad last updated on 18/Jun/19

let use hospital theorem let u(x) =ln(1+x+sinx)−ln(1+sin(2x) ⇒  u^′ (x) =((1+cosx)/(1+x+sinx)) −((2cosx)/(1+sin(2x)))  u^(′′) (x) =((−sinx(1+x +sinx)−(1+cosx)^2 )/((1+x+sinx)^2 )) −2 ((−sinx(1+sin(2x))−cosx(2cosx(2x)))/((1+sin(2x))^2 ))  ⇒lim_(x→0)    u^((2)) (x) =((−4)/1) −2 ((−2)/1) =−4+4 =0  v(x)=x^2  ⇒v^′ (x) =2x ⇒v^((2)) (x)=2  ⇒lim_(x→0)    ((ln(1+x+sinx)−ln(1+sin(2x)))/x^2 )  =lim_(x→0)    ((u^((2)) (x))/(v^((2)) (x))) =0

$${let}\:{use}\:{hospital}\:{theorem}\:{let}\:{u}\left({x}\right)\:={ln}\left(\mathrm{1}+{x}+{sinx}\right)−{ln}\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\:\Rightarrow\right. \\ $$$${u}^{'} \left({x}\right)\:=\frac{\mathrm{1}+{cosx}}{\mathrm{1}+{x}+{sinx}}\:−\frac{\mathrm{2}{cosx}}{\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)} \\ $$$${u}^{''} \left({x}\right)\:=\frac{−{sinx}\left(\mathrm{1}+{x}\:+{sinx}\right)−\left(\mathrm{1}+{cosx}\right)^{\mathrm{2}} }{\left(\mathrm{1}+{x}+{sinx}\right)^{\mathrm{2}} }\:−\mathrm{2}\:\frac{−{sinx}\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\right)−{cosx}\left(\mathrm{2}{cosx}\left(\mathrm{2}{x}\right)\right)}{\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:{u}^{\left(\mathrm{2}\right)} \left({x}\right)\:=\frac{−\mathrm{4}}{\mathrm{1}}\:−\mathrm{2}\:\frac{−\mathrm{2}}{\mathrm{1}}\:=−\mathrm{4}+\mathrm{4}\:=\mathrm{0} \\ $$$${v}\left({x}\right)={x}^{\mathrm{2}} \:\Rightarrow{v}^{'} \left({x}\right)\:=\mathrm{2}{x}\:\Rightarrow{v}^{\left(\mathrm{2}\right)} \left({x}\right)=\mathrm{2}\:\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}+{sinx}\right)−{ln}\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\right)}{{x}^{\mathrm{2}} } \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{u}^{\left(\mathrm{2}\right)} \left({x}\right)}{{v}^{\left(\mathrm{2}\right)} \left({x}\right)}\:=\mathrm{0}\: \\ $$

Answered by tanmay last updated on 17/Jun/19

lim_(x→0)  ((ln(((1+x+sinx)/(1+sin2x))))/x^2 )  lim_(x→0)  ((ln(1+((1+x+sinx)/(1+sin2x))−1))/((((1+x+sinx)/(1+sin2x))−1)))×(((x+sinx−sin2x)/(1+sin2x))/x^2 )  lim_(t→0)  ((ln(1+t))/t)×lim_(x→0) (1/(1+sin2x))×lim_(x→0)  ((x+sinx−sin2x)/x^2 )  1×1×lim_(x→0)  ((1+cosx−2cos2x)/(2x))((0/0))  =lim_(x→0)  ((−sinx+4sin2x)/2)=0

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{ln}\left(\frac{\mathrm{1}+{x}+{sinx}}{\mathrm{1}+{sin}\mathrm{2}{x}}\right)}{{x}^{\mathrm{2}} } \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{ln}\left(\mathrm{1}+\frac{\mathrm{1}+{x}+{sinx}}{\mathrm{1}+{sin}\mathrm{2}{x}}−\mathrm{1}\right)}{\left(\frac{\mathrm{1}+{x}+{sinx}}{\mathrm{1}+{sin}\mathrm{2}{x}}−\mathrm{1}\right)}×\frac{\frac{{x}+{sinx}−{sin}\mathrm{2}{x}}{\mathrm{1}+{sin}\mathrm{2}{x}}}{{x}^{\mathrm{2}} } \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{ln}\left(\mathrm{1}+{t}\right)}{{t}}×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{1}+{sin}\mathrm{2}{x}}×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}+{sinx}−{sin}\mathrm{2}{x}}{{x}^{\mathrm{2}} } \\ $$$$\mathrm{1}×\mathrm{1}×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}+{cosx}−\mathrm{2}{cos}\mathrm{2}{x}}{\mathrm{2}{x}}\left(\frac{\mathrm{0}}{\mathrm{0}}\right) \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−{sinx}+\mathrm{4}{sin}\mathrm{2}{x}}{\mathrm{2}}=\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com