All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 62200 by maxmathsup by imad last updated on 17/Jun/19
calculatelimx→0ln(1+x+sinx)−ln(1+sin(2x))x2
Commented by maxmathsup by imad last updated on 18/Jun/19
letusehospitaltheoremletu(x)=ln(1+x+sinx)−ln(1+sin(2x)⇒u′(x)=1+cosx1+x+sinx−2cosx1+sin(2x)u″(x)=−sinx(1+x+sinx)−(1+cosx)2(1+x+sinx)2−2−sinx(1+sin(2x))−cosx(2cosx(2x))(1+sin(2x))2⇒limx→0u(2)(x)=−41−2−21=−4+4=0v(x)=x2⇒v′(x)=2x⇒v(2)(x)=2⇒limx→0ln(1+x+sinx)−ln(1+sin(2x))x2=limx→0u(2)(x)v(2)(x)=0
Answered by tanmay last updated on 17/Jun/19
limx→0ln(1+x+sinx1+sin2x)x2limx→0ln(1+1+x+sinx1+sin2x−1)(1+x+sinx1+sin2x−1)×x+sinx−sin2x1+sin2xx2limt→0ln(1+t)t×limx→011+sin2x×limx→0x+sinx−sin2xx21×1×limx→01+cosx−2cos2x2x(00)=limx→0−sinx+4sin2x2=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com