All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 62209 by maxmathsup by imad last updated on 17/Jun/19
findg(a)=∫(x+a)x2−a2dx
Commented by maxmathsup by imad last updated on 18/Jun/19
changementx=ach(t)giveg(a)=∫(acht+a)a2(ch2t−1)ash(t)dt=a2∣a∣∫(1+ch(t)sh2(t)dt=a2∣a∣∫2ch2tsh2tdt=2a2∣a∣∫(12sh(2t))2dt=a2∣a∣2∫ch(4t)−12dt=a2∣a∣4∫(ch(4t)−1)dt=a2∣a∣16sh(4t)−a2∣a∣4t+cbutwehavech(t)=xa⇒t=argch(xa)=ln(xa+x2a2−1)⇒4t=ln{(xa+x2a2−1)4}andsh(4t)=e4t−e−4t2=12{(xa+x2a2−1)4−(xa+x2a2−1)−4}⇒A=a2∣a∣32{(xa+x2a2−1)4−(xa+x2a2−1)−4}−a2∣a∣4ln(xa+x2a2−1)+C
Answered by tanmay last updated on 17/Jun/19
∫xx2−a2dx+a∫x2−a2dx12∫(x2−a2)12d(x2−a2)+a∫x2−a2dx12×(x2−a2)3232+a[xx2−a22−a22ln(x+x2−a2)]+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com