Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62209 by maxmathsup by imad last updated on 17/Jun/19

find g(a) =∫(x+a)(√(x^2 −a^2 ))dx

findg(a)=(x+a)x2a2dx

Commented by maxmathsup by imad last updated on 18/Jun/19

changement x=ach(t) give g(a) =∫  (acht +a)(√(a^2 (ch^2 t−1)))ash(t)dt  =a^2 ∣a∣ ∫  (1+ch(t)sh^2 (t) dt  =a^2 ∣a∣ ∫2ch^2 t sh^2 t dt =2a^2 ∣a∣ ∫  ((1/2)sh(2t))^2 dt  =((a^2 ∣a∣)/2) ∫   ((ch(4t)−1)/2)dt =((a^2 ∣a∣)/4) ∫  (ch(4t)−1)dt  =((a^2 ∣a∣)/(16)) sh(4t)−((a^2 ∣a∣)/4) t +c  but we have   ch(t)=(x/a) ⇒t =argch((x/a))=ln((x/a) +(√((x^2 /a^2 )−1))) ⇒  4t =ln{ ((x/a) +(√((x^2 /a^2 )−1)))^4 }  and   sh(4t) =((e^(4t)  −e^(−4t) )/2) =(1/2){  ((x/a)+(√((x^2 /a^2 )−1)))^4 −((x/a)+(√((x^2 /a^2 )−1)))^(−4) } ⇒  A =((a^2 ∣a∣)/(32)){ ((x/a) +(√((x^2 /a^2 )−1)))^4 −((x/a)+(√(x^2 /a^2 ))−1)^(−4) }−((a^2 ∣a∣)/4)ln((x/a)+(√((x^2 /a^2 )−1))) +C

changementx=ach(t)giveg(a)=(acht+a)a2(ch2t1)ash(t)dt=a2a(1+ch(t)sh2(t)dt=a2a2ch2tsh2tdt=2a2a(12sh(2t))2dt=a2a2ch(4t)12dt=a2a4(ch(4t)1)dt=a2a16sh(4t)a2a4t+cbutwehavech(t)=xat=argch(xa)=ln(xa+x2a21)4t=ln{(xa+x2a21)4}andsh(4t)=e4te4t2=12{(xa+x2a21)4(xa+x2a21)4}A=a2a32{(xa+x2a21)4(xa+x2a21)4}a2a4ln(xa+x2a21)+C

Answered by tanmay last updated on 17/Jun/19

∫x(√(x^2 −a^2 )) dx+a∫(√(x^2 −a^2 )) dx  (1/2)∫(x^2 −a^2 )^(1/2) d(x^2 −a^2 )+a∫(√(x^2 −a^2 )) dx  (1/2)×(((x^2 −a^2 )^(3/2) )/(3/2))+a[((x(√(x^2 −a^2 )))/2)−(a^2 /2)ln(x+(√(x^2 −a^2 )) )]+c

xx2a2dx+ax2a2dx12(x2a2)12d(x2a2)+ax2a2dx12×(x2a2)3232+a[xx2a22a22ln(x+x2a2)]+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com