Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 62210 by maxmathsup by imad last updated on 17/Jun/19

let f(x) =(x+1)^n  arctan(nx)  calculate f^((n)) (0).

letf(x)=(x+1)narctan(nx)calculatef(n)(0).

Commented by mathmax by abdo last updated on 24/Jun/19

let determine f^((p)) (x)  leibniz formulse give  f^((p)) (x) =Σ_(k=0) ^p  C_p ^k    {(x+1)^n }^((k))   (arctan(nx))^((p−k))     we have   (X^n )^((k))  =0 si k>n  (X^n )^((1))  =nX^(n−1)  ⇒(X^n )^((k))  =n(n−1)..(n−k+1)X^(n−k) =((n!)/((n−k)!))X^(n−k)   if k≤n  and   (X^n )^((n))  =n!   so for p≥n we get  f^((p)) (x) =Σ_(k=0) ^n  C_p ^k   {(x+1)^n }^((k))  {arctan(nx)}^((p−k))  +Σ_(k=n+1) ^p  C_p ^k  {(x+1)^n }^((k)) {arctan(nx)}^((p−k))   =Σ_(k=0) ^n   C_p ^k    ((n!)/((n−k)!))(x+1)^(n−k)   {arctan(nx)}^((p−k))   ⇒  f^((n)) (x) =Σ_(k=0) ^n  C_n ^k   ((n!)/((n−k)!)){ arctan(nx)}^((n−k))   =Σ_(k=0) ^n  C_n ^k   k!  ((n!)/(k!(n−k)!)) {arctan(nx)}^((n−k))  =Σ_(k=0) ^n   k!  (C_n ^k )^2  { arctan(nx)}^((n−k))   we have (arctan(nx))^((1))  =(n/(1+n^2  x^2 )) =(n/(n^2 (x^2 +(1/n^2 )))) =(1/(n(x−(i/n))(x+(i/n))))  =(1/(n(2(i/n)))){  (1/(x−(i/n))) −(1/(x+(i/n)))} =(1/(2i)){ (1/(x−(i/n))) −(1/((x+(i/n))))} ⇒  {arctan(nx)}^((p))  =(1/(2i)){  ((1/(x−(i/n))))^((p−1)) −((1/(x+(i/n))))^((p−1)) }  =(1/(2i)){ (((−1)^(p−1) (p−1)!)/((x−(i/n))^p )) −(((−1)^(p−1) (p−1)!)/((x+(i/n))^p ))} ⇒  {arctan(nx)}^((n−k))  =(1/(2i))(−1)^(n−k−1) (n−k−1)!{(1/((x−(i/n))^(n−k) )) −(1/((x+(i/n))^(n−k) ))} ⇒  f^((n)) (x) =(1/(2i))Σ_(k=0) ^n  k!(C_n ^k )^2  (−1)^(n−k−1) (n−k−1)!{(1/((x−(i/n))^(n−k) )) −(1/((x+(i/n))^(n−k) ))}

letdeterminef(p)(x)leibnizformulsegivef(p)(x)=k=0pCpk{(x+1)n}(k)(arctan(nx))(pk)wehave(Xn)(k)=0sik>n(Xn)(1)=nXn1(Xn)(k)=n(n1)..(nk+1)Xnk=n!(nk)!Xnkifknand(Xn)(n)=n!soforpnwegetf(p)(x)=k=0nCpk{(x+1)n}(k){arctan(nx)}(pk)+k=n+1pCpk{(x+1)n}(k){arctan(nx)}(pk)=k=0nCpkn!(nk)!(x+1)nk{arctan(nx)}(pk)f(n)(x)=k=0nCnkn!(nk)!{arctan(nx)}(nk)=k=0nCnkk!n!k!(nk)!{arctan(nx)}(nk)=k=0nk!(Cnk)2{arctan(nx)}(nk)wehave(arctan(nx))(1)=n1+n2x2=nn2(x2+1n2)=1n(xin)(x+in)=1n(2in){1xin1x+in}=12i{1xin1(x+in)}{arctan(nx)}(p)=12i{(1xin)(p1)(1x+in)(p1)}=12i{(1)p1(p1)!(xin)p(1)p1(p1)!(x+in)p}{arctan(nx)}(nk)=12i(1)nk1(nk1)!{1(xin)nk1(x+in)nk}f(n)(x)=12ik=0nk!(Cnk)2(1)nk1(nk1)!{1(xin)nk1(x+in)nk}

Commented by mathmax by abdo last updated on 24/Jun/19

f^((n)) (0) =(1/(2i))Σ_(k=0) ^n  k!(C_n ^k )^2  (−1)^(n−k−1) (n−k−1)!{(1/((−(i/n))^(n−k) ))−(1/(((i/n))^(n−k) ))} .

f(n)(0)=12ik=0nk!(Cnk)2(1)nk1(nk1)!{1(in)nk1(in)nk}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com