Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62213 by maxmathsup by imad last updated on 17/Jun/19

calculate ∫∫∫_D  e^(−x^2 −y^2 ) (√(x^2  +y^2  +z^2 ))dxdydz with  D ={(x,y,z)∈R^3  /   0≤x≤1 , 1≤y≤2  and   2≤z≤3 }

$${calculate}\:\int\int\int_{{D}} \:{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }{dxdydz}\:{with} \\ $$$${D}\:=\left\{\left({x},{y},{z}\right)\in{R}^{\mathrm{3}} \:/\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:,\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\:\:{and}\:\:\:\mathrm{2}\leqslant{z}\leqslant\mathrm{3}\:\right\} \\ $$

Commented by prof Abdo imad last updated on 20/Jun/19

let use the diffeomorphism x=rcosθ  ,y=rsinθ  0≤x≤1 and 1≤y≤2 ⇒1 ≤x^2  +y^2 ≤5 ⇒1≤r≤(√5)  ∫∫∫_D e^(−x^2 −y^2 ) (√(x^2  +y^2  +z^2 ))dxdydz  =∫_2 ^3 (  ∫_1 ^(√5) (e^(−r^2 ) (√(r^2  +z^2 )))rdr∫_0 ^(π/2)  dθ)dz  =(π/2) ∫_2 ^3  (  ∫_1 ^(√5) (re^(−r^2 ) (√(r^2  +z^2 ))dr)dz but  by parts  ∫_1 ^(√5)  (re^(−r^2 ) )(√(r^2  +z^2 ))dr   =[−(1/2) e^(−r^2 ) (√(r^2  +z^2 ))]_1 ^(√5)   +(1/2)∫_1 ^(√5)  e^(−r^2 )   ((2r)/(√(r^2  +z^2 ))) dr  =(1/2)(e^(−1) (√(1+z^2 ))−e^(−5) (√(5+z^2 ))) +∫_1 ^(√5)   ((re^(−r^2 ) )/(√(r^2  +z^2 ))) dr  r =zu ⇒  ∫_1 ^(√5)  ((r e^(−r^2 ) )/(√(r^2  +z^2 ))) dr =∫_(1/z) ^((√5)/z)     ((zu e^(−z^2 u^2 ) )/(z(√(1+u^2 )))) zdu  =z ∫_(1/z) ^((√5)/z)    ((u e^(−z^2 u^2 ) )/(√(1+u^2 ))) du .....be continued...

$${let}\:{use}\:{the}\:{diffeomorphism}\:{x}={rcos}\theta\:\:,{y}={rsin}\theta \\ $$$$\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\:\Rightarrow\mathrm{1}\:\leqslant{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{5}\:\Rightarrow\mathrm{1}\leqslant{r}\leqslant\sqrt{\mathrm{5}} \\ $$$$\int\int\int_{{D}} {e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }{dxdydz} \\ $$$$=\int_{\mathrm{2}} ^{\mathrm{3}} \left(\:\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{5}}} \left({e}^{−{r}^{\mathrm{2}} } \sqrt{{r}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }\right){rdr}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{d}\theta\right){dz} \\ $$$$=\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{2}} ^{\mathrm{3}} \:\left(\:\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{5}}} \left({re}^{−{r}^{\mathrm{2}} } \sqrt{{r}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }{dr}\right){dz}\:{but}\right. \\ $$$${by}\:{parts} \\ $$$$\int_{\mathrm{1}} ^{\sqrt{\mathrm{5}}} \:\left({re}^{−{r}^{\mathrm{2}} } \right)\sqrt{{r}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }{dr}\: \\ $$$$=\left[−\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{−{r}^{\mathrm{2}} } \sqrt{{r}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }\right]_{\mathrm{1}} ^{\sqrt{\mathrm{5}}} \:\:+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\sqrt{\mathrm{5}}} \:{e}^{−{r}^{\mathrm{2}} } \:\:\frac{\mathrm{2}{r}}{\sqrt{{r}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }}\:{dr} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({e}^{−\mathrm{1}} \sqrt{\mathrm{1}+{z}^{\mathrm{2}} }−{e}^{−\mathrm{5}} \sqrt{\mathrm{5}+{z}^{\mathrm{2}} }\right)\:+\int_{\mathrm{1}} ^{\sqrt{\mathrm{5}}} \:\:\frac{{re}^{−{r}^{\mathrm{2}} } }{\sqrt{{r}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }}\:{dr} \\ $$$${r}\:={zu}\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{\sqrt{\mathrm{5}}} \:\frac{{r}\:{e}^{−{r}^{\mathrm{2}} } }{\sqrt{{r}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }}\:{dr}\:=\int_{\frac{\mathrm{1}}{{z}}} ^{\frac{\sqrt{\mathrm{5}}}{{z}}} \:\:\:\:\frac{{zu}\:{e}^{−{z}^{\mathrm{2}} {u}^{\mathrm{2}} } }{{z}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:{zdu} \\ $$$$={z}\:\int_{\frac{\mathrm{1}}{{z}}} ^{\frac{\sqrt{\mathrm{5}}}{{z}}} \:\:\:\frac{{u}\:{e}^{−{z}^{\mathrm{2}} {u}^{\mathrm{2}} } }{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:{du}\:.....{be}\:{continued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com