All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 62220 by maxmathsup by imad last updated on 17/Jun/19
letf(x)=∫0∞t2x6+t6dtwithx>0 1)calculatef(x) 2)calculateg(x)=∫0∞t2(x6+t6)2dt 3)findvaluesofintegrals∫0∞t2t6+8dtand∫0∞t2(t6+8)2dt.
Commented bymaxmathsup by imad last updated on 19/Jun/19
1)f(x)=∫0∞t2x6+t6dtchangementt=xugive f(x)=∫0∞x2u2x6+x6u6xdu=1x3∫0∞u21+u6duchangementu6=αgiveu=α16 x3f(x)=∫0∞(α16)21+α16α16−1du=∫0∞α13+16−11+αdu=16∫0∞α12−11+αdα =16πsin(π2)=π6⇒f(x)=π6x3(x>0) 2)wehavef′(x)=−∫0∞6x5t2(x6+t6)2dt=−6x5∫0∞t2(x6+t6)2dt=−6x5g(x)⇒ g(x)=−f′(x)6x5butf(x)=π6x−3⇒f′(x)=π6(−3)x−4=−π2x4⇒ g(x)=−16x5(−π2x4)=π12x9 3)∫0∞t2t6+8dt=∫0∞t2(2)6+t6f(2)=π6(2)3=π122=π224 ∫0∞t2(t6+8)2dt=g(2)=π12(2)9=π12.2(24)=π12×16×2=...
ihaveusedtheresult∫0∞ta−11+tdt=πsin(πa)if0<a<1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com