Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 62225 by maxmathsup by imad last updated on 17/Jun/19

let j =e^((i2π)/3)    and P(x) =(1+jx)^n −(1−jx)^n   1) find P(x) at form of arctan  2) find the roots of P(x)  3)factorize inside C[x]  the polynome P(x)  4) calculate ∫_0 ^1  P(x)dx

letj=ei2π3andP(x)=(1+jx)n(1jx)n1)findP(x)atformofarctan2)findtherootsofP(x)3)factorizeinsideC[x]thepolynomeP(x)4)calculate01P(x)dx

Commented by mathmax by abdo last updated on 24/Jun/19

1) we have j =cos(((2π)/3))+isin(((2π)/3)) =−(1/2)+i((√3)/2) ⇒  P(x)=(1+(−(1/2)+i((√3)/2))x)^n  −(1−(−(1/2) +i((√3)/2))x)^n   =(1−(x/2) +i((√3)/2)x)^n  −(1+(x/2)−i((√3)/2)x)^n  =A^n (x)−B^n (x)  ∣A(x)∣ =(√((1−(x/2))^2  +(3/4)x^2 )) =(√(((2−x)^2  +3x^2 )/4))=(1/2)(√((x−2)^2  +3x^2 ))  we know that x+iy =(√(x^2  +y^2  )) e^(i arctan((y/x)))  ⇒  A(x) =(1/2)(√((x−2)^2  +3x^2 )) e^(i arctan((((√3)x)/(2−x))))  ⇒A^n (x) =(1/2^n ){(x−2)^2  +3x^2 }^(n/2)  e^(i n arctan((((√3)x)/(2−x))))   ∣B(x)∣ =(1/2)(√((x+2)^2  +3x^2  )) ⇒B(x) =(1/2)(√((x+2)^2  +3x^2  ))e^(i arctan(((−(√3)x)/(2+x))))  ⇒  B^n (x) =(1/2^n ){ (x+2)^2  +3x^2 }^(n/2)  e^(−in arctan((((√3)x)/(2+x))))  ⇒  P(x) =(1/2^n ){ (x−2)^2  +3x^2 }^(n/2)  e^(in arctan((((√3)x)/(2−x)))) −(1/2^n ){(x+2)^2  +3x^2 }^(n/2)  e^(−in arctan((((√3)x)/(2+x))))   and we see that  B(x) =A(−x).

1)wehavej=cos(2π3)+isin(2π3)=12+i32P(x)=(1+(12+i32)x)n(1(12+i32)x)n=(1x2+i32x)n(1+x2i32x)n=An(x)Bn(x)A(x)=(1x2)2+34x2=(2x)2+3x24=12(x2)2+3x2weknowthatx+iy=x2+y2eiarctan(yx)A(x)=12(x2)2+3x2eiarctan(3x2x)An(x)=12n{(x2)2+3x2}n2einarctan(3x2x)B(x)=12(x+2)2+3x2B(x)=12(x+2)2+3x2eiarctan(3x2+x)Bn(x)=12n{(x+2)2+3x2}n2einarctan(3x2+x)P(x)=12n{(x2)2+3x2}n2einarctan(3x2x)12n{(x+2)2+3x2}n2einarctan(3x2+x)andweseethatB(x)=A(x).

Commented by mathmax by abdo last updated on 24/Jun/19

2) P(x)=0 ⇔(1+jx)^n  =(1−jx)^n  ⇒(((1+jx)/(1−jx)))^n  =1 ⇒Z^n  =1  with Z =((1+jx)/(1−jx))   the roots of Z^n  =1 are Z_k =e^(i((2kπ)/n))   with k∈[[0,n−1]]  Z =((1+jx)/(1−jx)) ⇒Z−jZx =1+jx ⇒Z−1 =jx(1+Z) ⇒x =((Z−1)/(j(1+Z))) so the roots  of P(x)=0 are x_k =−(1/j) ((1−Zk)/(1+Z_k ))  =−(1/j) ((1−cos(((2kπ)/n))−i sin(((2kπ)/n)))/(1+cos(((2kπ)/n))+i sin(((2kπ)/n)))) =−(1/j)((2sin^2 (((kπ)/n))−2i sin(((kπ)/n))cos(((kπ)/n)))/(2cos^2 (((kπ)/n))+2i cos(((kπ)/n))sin(((kπ)/n))))  =−(1/j) ((−i sin(((kπ)/n)) e^(i((kπ)/n)) )/(cos(((kπ)/n))e^((ikπ)/n) )) =(i/j)tan(((kπ)/n))   ⇒ x_k =(i/j) tan(((kπ)/n)) and k ∈[[0,n−1]].

2)P(x)=0(1+jx)n=(1jx)n(1+jx1jx)n=1Zn=1withZ=1+jx1jxtherootsofZn=1areZk=ei2kπnwithk[[0,n1]]Z=1+jx1jxZjZx=1+jxZ1=jx(1+Z)x=Z1j(1+Z)sotherootsofP(x)=0arexk=1j1Zk1+Zk=1j1cos(2kπn)isin(2kπn)1+cos(2kπn)+isin(2kπn)=1j2sin2(kπn)2isin(kπn)cos(kπn)2cos2(kπn)+2icos(kπn)sin(kπn)=1jisin(kπn)eikπncos(kπn)eikπn=ijtan(kπn)xk=ijtan(kπn)andk[[0,n1]].

Commented by mathmax by abdo last updated on 24/Jun/19

3) P(x) =λ Π_(k=0) ^(n−1) (x−(i/j)tan(((kπ)/n)))   with λ is the dominent coefficientof P(x).

3)P(x)=λk=0n1(xijtan(kπn))withλisthedominentcoefficientofP(x).

Commented by mathmax by abdo last updated on 24/Jun/19

4) we have P(x) =Σ_(k=0) ^n  C_n ^k j^k  x^k   −Σ_(k=0) ^n  C_n ^k  (−j)^k  x^k   =Σ_(k=0) ^n  C_n ^k  (j^k  −(−j)^k )x^k     but  j^k  −(−j)^k  =e^(i((2kπ)/3))  −(−e^(i((2π)/3)) )^k   ={1−(−1)^k } e^(i((2kπ)/3))  =0 if  k=2p  and  =2 e^(i((2(2p+1)π)/3))  if k =2p+1 ⇒  P(x) =Σ_(p=0) ^([((n−1)/2)])  2 C_n ^(2p+1)  e^(i((2(2p+1)π)/3))   x^(2p+1)  ⇒  ∫_0 ^1  P(x)dx =2Σ_(p=0) ^([((n−1)/2)])    C_n ^(2p+1)     e^(i((4p+2)/3)π)  (1/(2p+2))  =Σ_(p=0) ^([((n−1)/2)])   C_n ^(2p+1)    (e^(i((4p+2)/3)π) /(p+1)) .

4)wehaveP(x)=k=0nCnkjkxkk=0nCnk(j)kxk=k=0nCnk(jk(j)k)xkbutjk(j)k=ei2kπ3(ei2π3)k={1(1)k}ei2kπ3=0ifk=2pand=2ei2(2p+1)π3ifk=2p+1P(x)=p=0[n12]2Cn2p+1ei2(2p+1)π3x2p+101P(x)dx=2p=0[n12]Cn2p+1ei4p+23π12p+2=p=0[n12]Cn2p+1ei4p+23πp+1.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com