Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62232 by aliesam last updated on 18/Jun/19

Commented by maxmathsup by imad last updated on 18/Jun/19

we have ∣α+β e^(iθ) ∣ =∣α +βcosθ +iβsinθ∣ =(√((α+βcosθ)^2  +β^2 sin^2 θ)) ⇒  ln(∣α+ie^(iθ) ∣) =(1/2)ln{ (α+β cosθ)^2  +β^2 sin^2 θ} =(1/2)ln{α^2 +2αβ cosθ +β^2 } ⇒  I =(1/2) ∫_0 ^(2π) ln( α^2 +β^2  +2αβ cosθ)dθ  =(1/2) ∫_0 ^(2π) {ln(α^2 +β^2 ) +ln(1+((2αβ)/(α^2  +β^2 )) cosθ)}dθ  =πln(α^2  +β^2 ) +(1/2) ∫_0 ^(2π)  ln(1+((2αβ)/(α^2  +β^2 )) cosθ)dθ  let find  f(t) =∫_0 ^(2π) ln(1+tcosθ)dθ    ⇒f^′ (t) =∫_0 ^(2π)   ((cosθ)/(1+tcosθ)) dθ  =(1/t) ∫_0 ^(2π)  ((1+tcosθ−1)/(1+tcosθ)) dθ =((2π)/t) −(1/t) ∫_0 ^(2π)  (dθ/(1+tcosθ))  changement e^(iθ)  =z give  ∫_0 ^(2π)   (dθ/(1+t cosθ)) =∫_(∣z∣=1)     (1/(1+t((z+z^(−1) )/2))) (dz/(iz))  =∫_(∣z∣=1)       ((2dz)/(iz(2 +tz +tz^(−1) ))) =∫_(∣z∣=1)     ((−2idz)/(2z +tz^2  +t)) =∫_(∣z∣=1)     ((−2idz)/(tz^2  +2z +t))  let w(z) =((−2i)/(tz^2  +2z +t))  poles of w?  Δ^′  =1−t^2    case 1    ∣t∣<1 ⇒ z_1 =−1+(√(1−t^2 ))  and z_2 =−1−(√(1−t^2 ))  ∣z_1 ∣ −1 =∣−1+(√(1−t^2 ))∣−1 =1−(√(1−t^2 ))−1 <0 ⇒∣z_1 ∣<1  ∣z_2 ∣−1 =∣−1−(√(1−t^2 ))∣−1 =1+(√(1−t^2 ))−1 >0 ( to eliminate from residus)  ∫_(∣z∣=1)    w−z)dz =2iπ Res(w,z_1 )   but w(z) =((−2i)/(t(z−z_1 )(z−z_2 ))) ⇒  Res(w,z_1 ) =((−2i)/(t(z_1 −z_2 ))) =((−2i)/(t2(√(1−t^2 )))) =((−i)/(t(√(1−t^2 )))) ⇒  ∫_(∣z∣=1)    w(z)dz =2iπ (((−i)/(t(√(1−t^2 ))))) =((2π)/(t(√(1−t^2 )))) ⇒  f^′ (t) = ((2π)/t) −((2π)/(t^2 (√(1−t^2 )))) ⇒f(t) =2πln∣t∣ −2π ∫   (dt/(t^2 (√(1−t^2 )))) +c   ∫   (dt/(t^2 (√(1−t^2 )))) =∫ (1/t^2 )(1−t^2 )^((−1)/2)  dt =_(by parts)      −(1/t)(1−t^2 )^(−(1/2))  −∫ −(1/t)(−(1/2))(−2t)(1−t^2 )^(−(3/2)) dt  =−(1/(t(√(1−t^2 )))) + ∫    (1/((1−t^2 )^(3/2) )) dt   cyangement t =sinα give  ∫   (dt/((1−t^2 )^(3/2) )) =∫  (1/(cos^3 α)) cosα dα =∫  (dα/(cos^2 α)) =∫   ((2dα)/(1+cos(2α)))  =_(tan(α)=u)        ∫    ((2du)/((1+u^2 )(1+((1−u^2 )/(1+u^2 ))))) =∫    ((2du)/(1+u^2  +1−u^2 )) =∫ du =u +c  =tan(α)+c =tan(arcsint) +c ⇒  f(t) =2π ln∣t∣−2π {((−1)/(t(√(1−t^2 )))) +tan(arcsint)} +c ⇒  I =πln(α^2  +β^2 ) +(1/2)f(((2αβ)/(α^2  +β^2 )) ) +c  I=πln(α^2  +β^2 ) +πln∣((2αβ)/(α^2  +β^2 ))∣−π{−(1/(((2αβ)/(α^2  +β^2 ))(√(1−(((2αβ)/(α^2  +β^( )))))^2 )) +tan(arcsin(((2αβ)/(α^2  +β^2 )))}  +c   rest to find  the value of c   ....be continued...

wehaveα+βeiθ=∣α+βcosθ+iβsinθ=(α+βcosθ)2+β2sin2θln(α+ieiθ)=12ln{(α+βcosθ)2+β2sin2θ}=12ln{α2+2αβcosθ+β2}I=1202πln(α2+β2+2αβcosθ)dθ=1202π{ln(α2+β2)+ln(1+2αβα2+β2cosθ)}dθ=πln(α2+β2)+1202πln(1+2αβα2+β2cosθ)dθletfindf(t)=02πln(1+tcosθ)dθf(t)=02πcosθ1+tcosθdθ=1t02π1+tcosθ11+tcosθdθ=2πt1t02πdθ1+tcosθchangementeiθ=zgive02πdθ1+tcosθ=z∣=111+tz+z12dziz=z∣=12dziz(2+tz+tz1)=z∣=12idz2z+tz2+t=z∣=12idztz2+2z+tletw(z)=2itz2+2z+tpolesofw?Δ=1t2case1t∣<1z1=1+1t2andz2=11t2z11=∣1+1t21=11t21<0⇒∣z1∣<1z21=∣11t21=1+1t21>0(toeliminatefromresidus)z∣=1wz)dz=2iπRes(w,z1)butw(z)=2it(zz1)(zz2)Res(w,z1)=2it(z1z2)=2it21t2=it1t2z∣=1w(z)dz=2iπ(it1t2)=2πt1t2f(t)=2πt2πt21t2f(t)=2πlnt2πdtt21t2+cdtt21t2=1t2(1t2)12dt=byparts1t(1t2)121t(12)(2t)(1t2)32dt=1t1t2+1(1t2)32dtcyangementt=sinαgivedt(1t2)32=1cos3αcosαdα=dαcos2α=2dα1+cos(2α)=tan(α)=u2du(1+u2)(1+1u21+u2)=2du1+u2+1u2=du=u+c=tan(α)+c=tan(arcsint)+cf(t)=2πlnt2π{1t1t2+tan(arcsint)}+cI=πln(α2+β2)+12f(2αβα2+β2)+cI=πln(α2+β2)+πln2αβα2+β2π{12αβα2+β21(2αβα2+β()2+tan(arcsin(2αβα2+β2)}+cresttofindthevalueofc....becontinued...

Commented by aliesam last updated on 18/Jun/19

thanks sir brilliant sol

thankssirbrilliantsol

Commented by maxmathsup by imad last updated on 18/Jun/19

∣((2αβ)/(α^2  +β^2 ))∣<1  for that  i take t =((2αβ)/(α^2  +β^2 ))  without studying the case ∣t∣>1..

2αβα2+β2∣<1forthatitaket=2αβα2+β2withoutstudyingthecaset∣>1..

Commented by maxmathsup by imad last updated on 18/Jun/19

you are welcome sir .

youarewelcomesir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com