All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 62251 by hovea cw last updated on 18/Jun/19
∫(x2−4)1/2dxtrigsubstitutiononly
Commented by maxmathsup by imad last updated on 18/Jun/19
letI=∫x2−4dxweusethechangementx=2ch(t)⇒I=∫4ch2t−4(2sh(t)dt=4∫ch2t−1sh(t)dt=4∫sh2tdt=4∫ch(2t)−12dt=2∫ch(2t)dt−2t=sh(2t)−2t=2sh(t)ch(t)−2t=xch2t−1−2t=xx24−1−2t=x2x2−4−2argch(x2)=x2x2−4−2ln(x2+x24−1)=x2x2−4−2ln(x+x2−42)+c0=x2x2−4−2ln(x+x2−4)+4ln(2)+c0⇒∫x2−4dx=x2x2−4−2ln(x+x2−4)+C.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com