All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 62252 by hovea cw last updated on 18/Jun/19
∫ln(x+1)/(x2−x+1) limit={0>2}
Commented bymaxmathsup by imad last updated on 18/Jun/19
letI=∫02ln(x+1)x2−x+1dxandf(t)=∫02ln(1+tx)x2−x+1dxwitht⩾0 wehaveI=f(1)andf′(t)=∫02x(1+tx)(x2−x+1)dx =1t∫021+tx−1(1+tx)(x2−x+1)dx=1t∫02dx(x2−x+1)−1t∫02dx(tx+1)(x2−x+1) ∫02dxx2−x+1=∫02dx(x−12)2+34=x−12=32u43∫−13331u2+132du =23[arctn(u)]−133=23{arctan(3)+arctan(13)}=23π2=π3 letdecomposeF(x)=1(tx+1)(x2−x+1)→(Δ<0) F(x)=atx+1+bx+cx2−x+1 a=limx→−1t(tx+1)F(x)=t2t2+t+1⇒F(x)=t2(tx+1)(t2+t+1)+bx+cx2−x+1 limt→+∞xF(x)=0=at+b⇒a+tb=0⇒tb=−a⇒b=−at=−tt2+t+1⇒ F(x)=t2(t2+t+1)(tx+1)+−tt2+t+1x+cx2−x+1 F(0)=1=a+c⇒c=1−a=1−t2t2+t+1=t+1t2+t+1⇒ F(x)=t2(t2+t+1)(tx+1)−1t2+t+1tx−t−1x2−x+1⇒ ∫02F(x)dx=t2t2+t+1∫02dxtx+1−1t2+t+1∫02tx−t−1x2−x+1dx ∫02dxtx+1=1t[ln∣tx+1∣]02=1tln∣2t+1∣ ∫02tx−t−1x2−x+1dx=t2∫022x−1+1x2−x+1dx−(t+1)∫02dxx2−x+1 =t2[ln∣x2−x+1∣]02−(t+1)π3=t2ln(3)−π3(t+1)⇒ ∫02F(x)dx=tt2+t+1ln∣2t+1∣−1t2+t+1{(ln(3)2−π3)t−π3}⇒ f′(t)=πt3−1t∫02F(x)dx =πt3−ln∣2t+1∣t2+t+1−ln(3)2−π3t2+t+1+πt3(t2+t+1)⇒ f(t)=π3ln(t)−∫ln(2t+1)t2+t+1dt−(ln32−π3)∫dtt2+t+1+π3∫dtt(t2+t+1)+c ...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com