Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 62281 by behi83417@gmail.com last updated on 19/Jun/19

 { ((x^3 +y^3 =3xy)),((x^4 +y^4 =4xy)) :}              [x,y≠0]

{x3+y3=3xyx4+y4=4xy[x,y0]

Answered by mr W last updated on 19/Jun/19

let u=x+y, v=xy  x^3 +y^3 =3xy  (x+y)^3 =x^3 +y^3 +3xy(x+y)  (x+y)^3 =3xy+3xy(x+y)  u^3 =3v(1+u)  ⇒v=(u^3 /(3(1+u)))  x^4 +y^4 =(x^2 +y^2 )^2 −2x^2 y^2 =[(x+y)^2 −2xy]^2 −2(xy)^2 =4xy  ⇒(u^2 −2v)^2 −2v^2 =4v  ⇒[u^2 −((2u^3 )/(3(1+u)))]^2 −2×(u^6 /(9(1+u)^2 ))=4×(u^3 /(3(1+u)))  ⇒[3u^2 (1+u)−2u^3 ]^2 −2u^6 =12u^3 (1+u)  ⇒u^4 (3+u)^2 −2u^6 =12u^3 (1+u)  ⇒u=0⇒x=y=0    ⇒u(3+u)^2 −2u^3 =12(1+u)  ⇒u^3 −6u^2 +3u+12=0  let u=s+2  ⇒s^3 −9s+2=0  Δ=(−3)^3 +1^2 <0 ⇒3 real roots  ⇒s=2(√3) sin ((1/3) sin^(−1) (1/(3(√3)))+((2kπ)/3))  ⇒u=2+2(√3) sin ((1/3) sin^(−1) (1/(3(√3)))+((2kπ)/3))  ⇒v=(u^3 /(3(1+u)))  ⇒(x−y)^2 =(x+y)^2 −4xy=u^2 −4v  ⇒x−y=±(√(u^2 −4v))  ⇒x+y=u  ⇒x=((u±(√(u^2 −4v)))/2)  ⇒y=((u∓(√(u^2 −4v)))/2)   { ((x=1.426766 / 0.796696 / 2.44101+0.79718i / 2.44101−0.79718i / −0.55274+1.99092i /−0.55274−1.99092i )),((y=0.796696 / 1.426766 / 2.44101−0.79718i / 2.44101+0.79718i / −0.55274−1.99092i / −0.55274+1.99092i )) :}

letu=x+y,v=xyx3+y3=3xy(x+y)3=x3+y3+3xy(x+y)(x+y)3=3xy+3xy(x+y)u3=3v(1+u)v=u33(1+u)x4+y4=(x2+y2)22x2y2=[(x+y)22xy]22(xy)2=4xy(u22v)22v2=4v[u22u33(1+u)]22×u69(1+u)2=4×u33(1+u)[3u2(1+u)2u3]22u6=12u3(1+u)u4(3+u)22u6=12u3(1+u)u=0x=y=0u(3+u)22u3=12(1+u)u36u2+3u+12=0letu=s+2s39s+2=0Δ=(3)3+12<03realrootss=23sin(13sin1133+2kπ3)u=2+23sin(13sin1133+2kπ3)v=u33(1+u)(xy)2=(x+y)24xy=u24vxy=±u24vx+y=ux=u±u24v2y=uu24v2{x=1.426766/0.796696/2.44101+0.79718i/2.441010.79718i/0.55274+1.99092i/0.552741.99092iy=0.796696/1.426766/2.441010.79718i/2.44101+0.79718i/0.552741.99092i/0.55274+1.99092i

Commented by behi83417@gmail.com last updated on 19/Jun/19

thanks in advance dear master.  nice and smart solution.

thanksinadvancedearmaster.niceandsmartsolution.

Commented by behi83417@gmail.com last updated on 19/Jun/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com