All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 62330 by maxmathsup by imad last updated on 19/Jun/19
findthevalueof∫0∞ta−1(1+t)2dtwith0<a<1
Commented bymathmax by abdo last updated on 04/Jul/19
wehaveprovedthatB(x,y)=∫0∞tx−1(1+t)x+ydtlettakex=aandx+y=2⇒ x=aandy=2−a⇒ ∫0∞ta−1(1+t)2dt=B(a,2−a)=Γ(a)Γ(2−a)Γ(a+2−a)=Γ(a)Γ(2−a)(Γ(2)=1!=1)⇒ ∫0∞ta−1(1+t)2dt=Γ(a)Γ(2−a)
Answered by tanmay last updated on 19/Jun/19
t=tan2θ→dt=2tanθsec2θdθ ∫0π2(tan2θ)a−1×2tanθsec2θdθsec4θ 2∫0π2(sinθ)2a−2+1×cos2θ×1(cosθ)2a−2+1dθ 2∫0π2(sinθ)2a−1×(cosθ)2−2a+1dθ formula2∫0π2(sinθ)2p−1(cosθ)2q−1dθ =⌈(p)⌈(q)⌈(p+q)here2p−1=2a−1p=a 2q−1=3−2a 2q=4−2a→q=2−a←lookhere answer=⌈(p)⌈(q)⌈(p+q)=⌈(a)×⌈(2−a)⌈(a+2−a) =⌈(a)⌈(2−a)1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com