Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 62332 by tanmay last updated on 19/Jun/19

Answered by tanmay last updated on 20/Jun/19

lim_(n→∞) [(((√2) ×n^(n−(1/2)) )/(n^(n+(1/2)) ×(√(2π)) ×e^(−n) ))×{(((2×n^(1/n) −1)^n )/n^2 )}^((n(n−(1/2)))/(ln^2 n)) ]  =(1/(√π))lim_(n→∞) [(e^n /n)×{(((2×n^(1/n) −1)^n )/n^2 )}^((n(n−(1/2)))/(ln^2 n)) ]  now   =(1/(√π))lim_(n→∞) [(e^n /n)×{(((2n^(1/n) −1)^n^2  )/n^(2n) )}^((n−(1/2))/(ln^2 n)) ]  =(1/(√π))lim_(n→∞) [(e^n /n)×{((n^n (2−(1/n^(1/n) ))^n^2  )/(n^n ×n^n ))}^((n−(1/2))/(ln^2 n)) ]  =(1/(√π))lim_(n→∞) [(e^n /n)×{((2^n^2  (1−(1/(2n^(1/n) )))^n^2  )/n^n )}^((n−(1/2))/(ln^2 n)) ]  =(1/(√π))lim_(n→∞) [(e^n /n)×{(2^n^2  /n^n )×(1−(1/(2n^(1/n) )))^(2n^(1/n) ×(n^2 /(2n^(1/n) ))) }^((n−(1/2))/(ln^2 n)) ]  =(1/(√π))lim_(n→∞) [(e^n /n)×{(2^n^2  /n^n )×e^(−(n^2 /(2n^(1/n) ))) }^((n−(1/2))/(ln^2 n)) ]  =(1/(√π))lim_(n→∞) [(e^n /n)×2^(n^2 ×((n−(1/2))/(ln^2 n))) ×(1/n^((n−(1/2))/(ln^2 n)) )×(e^((−1)/2) )^((n^2 /n^(1/n) )×((n−(1/2))/(ln^2 n))) ]  (1/(√π))lim_(n→∞)   wait

limn[2×nn12nn+12×2π×en×{(2×n1n1)nn2}n(n12)ln2n]=1πlimn[enn×{(2×n1n1)nn2}n(n12)ln2n]now=1πlimn[enn×{(2n1n1)n2n2n}n12ln2n]=1πlimn[enn×{nn(21n1n)n2nn×nn}n12ln2n]=1πlimn[enn×{2n2(112n1n)n2nn}n12ln2n]=1πlimn[enn×{2n2nn×(112n1n)2n1n×n22n1n}n12ln2n]=1πlimn[enn×{2n2nn×en22n1n}n12ln2n]=1πlimn[enn×2n2×n12ln2n×1nn12ln2n×(e12)n2n1n×n12ln2n]1πlimnwait

Terms of Service

Privacy Policy

Contact: info@tinkutara.com