Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62335 by maxmathsup by imad last updated on 19/Jun/19

1) calculate f(x,y) =∫_0 ^∞  ((e^(−xt) cos(yt))/(√t)) dt and g(x,y) =∫_0 ^∞   ((e^(−xt) sin(yt))/(√t)) dt  with x>0  and y>0  2) find the values of  ∫_0 ^∞  ((e^(−2t)  cos(t))/(√t)) dt and ∫_0 ^∞  ((e^(−t) cos(2t))/(√t)) dt

1)calculatef(x,y)=0extcos(yt)tdtandg(x,y)=0extsin(yt)tdt withx>0andy>0 2)findthevaluesof0e2tcos(t)tdtand0etcos(2t)tdt

Commented bymaxmathsup by imad last updated on 20/Jun/19

1) we have f(x,y)+ig(x,y) =∫_0 ^∞  (e^(−xt) /(√t))e^(iyt) dt =∫_0 ^∞   (e^(−(x+iy)t) /(√t)) dt   changement  (√(x+iy))(√t)=u  give f(x,y)+ig(x,y) =(√(x+iy))∫_0 ^∞   (e^(−u^2 ) /u)  (√t)=(u/(√(x+iy))) ⇒t =(u^2 /(x+iy)) ⇒dt =((2udu)/(x+iy)) ⇒f(x,y)+ig(x,y)=(√(x+iy))∫_0 ^∞   (e^(−u^2 ) /u) ((2udu)/(x+iy))  =(2/(√(x+iy)))∫_0 ^∞   e^(−u^2 ) du  =(2/(√(x+iy))) ((√π)/2)=((√π)/(√(x+iy)))  we have x+iy =(√(x^2  +y^2 )){(x/(√(x^2 +y^2 ))) +i(y/(√(x^2  +y^2 )))} =r e^(iθ)  ⇒r =(√(x^2  +y^2 ))  cosθ =(x/(√(x^2  +y^2 )))  and sinθ =(y/(√(x^2  +y^2 ))) ⇒tanθ =(y/x)      ⇒  θ =arctan((y/x)) ⇒x+iy =(x^2  +y^2 )^(1/2)  e^(iarctan((y/x)))  ⇒(√(x+iy)) =(x^2  +y^2 )^(1/4)  e^((i/2)arctan((y/x)))  ⇒  f(x,y) =(x^2  +y^2 )^(1/4)  cos((1/2)arctan((y/x))) and g(x,y) =(x^2  +y^2 )^(1/4)  sin((1/2)arctan((y/x)))

1)wehavef(x,y)+ig(x,y)=0extteiytdt=0e(x+iy)ttdt changementx+iyt=ugivef(x,y)+ig(x,y)=x+iy0eu2u t=ux+iyt=u2x+iydt=2udux+iyf(x,y)+ig(x,y)=x+iy0eu2u2udux+iy =2x+iy0eu2du=2x+iyπ2=πx+iy wehavex+iy=x2+y2{xx2+y2+iyx2+y2}=reiθr=x2+y2 cosθ=xx2+y2andsinθ=yx2+y2tanθ=yx θ=arctan(yx)x+iy=(x2+y2)12eiarctan(yx)x+iy=(x2+y2)14ei2arctan(yx) f(x,y)=(x2+y2)14cos(12arctan(yx))andg(x,y)=(x2+y2)14sin(12arctan(yx))

Commented bymaxmathsup by imad last updated on 20/Jun/19

2) ∫_0 ^∞   ((e^(−2t)  cos(t))/(√t)) dt =f(2,1) =^4 (√5)cos((1/2)arctan((1/2)))  ∫_0 ^∞   ((e^(−t)  cos(2t))/(√t)) dt =f(1,2) =^4 (√5)cos((1/2) arctan(2))

2)0e2tcos(t)tdt=f(2,1)=45cos(12arctan(12)) 0etcos(2t)tdt=f(1,2)=45cos(12arctan(2))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com