Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62342 by maxmathsup by imad last updated on 20/Jun/19

let f(ξ) =∫  (x^2 /(√(1−ξx^2 )))dx   with  0<ξ<1  1) determine a explicit form of f(ξ)  2) calculate lim_(ξ→1)    f(ξ)  3) calculate ∫_0 ^(1/2)  (x^2 /(√(1−sin^2 θ x^2 ))) dx with  0<θ<(π/2)

letf(ξ)=x21ξx2dxwith0<ξ<1 1)determineaexplicitformoff(ξ) 2)calculatelimξ1f(ξ) 3)calculate012x21sin2θx2dxwith0<θ<π2

Commented byprof Abdo imad last updated on 20/Jun/19

1) f(ξ)=(1/ξ) ∫ ((((√ξ)x)^2 )/(√(1−((√ξ)x)^2 ))) dx   =_((√ξ)x=t)     (1/ξ) ∫ (t^2 /(√(1−t^2 ))) (dt/(√ξ)) =(1/(ξ(√ξ))) ∫  (t^2 /(√(1−t^2 ))) dt  ∫ (t^2 /(√(1−t^2 ))) dt =−∫ ((1−t^2 −1)/(√(1−t^2 )))dt   =−∫ (√(1−t^2 ))dt +∫  (dt/(√(1−t^2 ))) +c  ∫   (dt/(√(1−t^2 ))) dt =arcsint   ∫ (√(1−t^2 ))dt =_(t=sinu)    ∫ cos^2 udu  =∫ ((1+cos(2u))/2) du =(u/2) +(1/4)sin(2u)  =(u/2) +(1/2)sinu cosu =(u/2) +(1/2)sinu(√(1−sin^2 u))  =((arcsint)/2) +(t/2)(√(1−t^2 )) ⇒  f(ξ) =(1/(ξ(√ξ)))(−((arcsint)/2) +(1/2)t(√(1−t^2 ))  +arcsint} +c  f(ξ)=(1/(ξ(√ξ))){((arcsint)/2) +((t(√(1−t^2 )))/2)} +c

1)f(ξ)=1ξ(ξx)21(ξx)2dx =ξx=t1ξt21t2dtξ=1ξξt21t2dt t21t2dt=1t211t2dt =1t2dt+dt1t2+c dt1t2dt=arcsint 1t2dt=t=sinucos2udu =1+cos(2u)2du=u2+14sin(2u) =u2+12sinucosu=u2+12sinu1sin2u =arcsint2+t21t2 f(ξ)=1ξξ(arcsint2+12t1t2+arcsint}+c f(ξ)=1ξξ{arcsint2+t1t22}+c

Commented byprof Abdo imad last updated on 20/Jun/19

t =x(√ξ) ⇒  f(ξ) =(1/(2ξ(√ξ))){ arcsin(x(√ξ))+x(√ξ)(√(1−ξx^2 ))} +c

t=xξ f(ξ)=12ξξ{arcsin(xξ)+xξ1ξx2}+c

Commented byprof Abdo imad last updated on 20/Jun/19

2) lim_(ξ→1)    f(ξ) =(1/2)( arcsin(x)+x(√(1−x^2 ))) +c

2)limξ1f(ξ)=12(arcsin(x)+x1x2)+c

Commented byprof Abdo imad last updated on 20/Jun/19

3) ∫_0 ^(1/2)  (x^2 /(√(1−sin^2 θ x^2 )))dx          (ξ=sin^2 θ)  =[(1/(2sin^3 θ)){arcsin(xsinθ) +xsinθ(√(1−sin^2 θ x^2 ))}]_0 ^(1/2)   =(1/(2sin^3 θ)){ arcsin(((sinθ)/2))+(1/2)sinθ(√(1−(1/4)sin^2 θ))}

3)012x21sin2θx2dx(ξ=sin2θ) =[12sin3θ{arcsin(xsinθ)+xsinθ1sin2θx2}]012 =12sin3θ{arcsin(sinθ2)+12sinθ114sin2θ}

Answered by mr W last updated on 20/Jun/19

f(ξ) =∫  (x^2 /(√(1−ξx^2 )))dx  =(1/ξ)∫  ((((√ξ)x)^2 )/(√(1−((√ξ)x)^2 )))d((√ξ)x)  =(1/ξ)∫  (t^2 /(√(1−t^2 )))dt  =(1/ξ)∫[  (1/(√(1−t^2 )))−(√(1−t^2 ))]dt  =....  =(1/(2ξ))[(1/(√ξ)) sin^(−1) ((√ξ)x)−x(√(1−ξx^2 ))]+C

f(ξ)=x21ξx2dx =1ξ(ξx)21(ξx)2d(ξx) =1ξt21t2dt =1ξ[11t21t2]dt =.... =12ξ[1ξsin1(ξx)x1ξx2]+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com