Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 62428 by Tawa1 last updated on 21/Jun/19

Commented by mathsolverby Abdo last updated on 21/Jun/19

this question is done take a look at the  platform

$${this}\:{question}\:{is}\:{done}\:{take}\:{a}\:{look}\:{at}\:{the} \\ $$$${platform} \\ $$

Commented by Tawa1 last updated on 21/Jun/19

Please reference the question number sir

$$\mathrm{Please}\:\mathrm{reference}\:\mathrm{the}\:\mathrm{question}\:\mathrm{number}\:\mathrm{sir} \\ $$

Commented by mathmax by abdo last updated on 21/Jun/19

go to Q.60976 you will find the answer.

$${go}\:{to}\:{Q}.\mathrm{60976}\:{you}\:{will}\:{find}\:{the}\:{answer}. \\ $$

Commented by Tawa1 last updated on 21/Jun/19

I searched but is skip the question number

$$\mathrm{I}\:\mathrm{searched}\:\mathrm{but}\:\mathrm{is}\:\mathrm{skip}\:\mathrm{the}\:\mathrm{question}\:\mathrm{number}\: \\ $$

Commented by mathmax by abdo last updated on 25/Jun/19

let consider  f(x)=∣x∣ ,2π periodic  even  we have   f(x) =(a_0 /2)+Σ_(n=1) ^∞  a_n cos(nx)  with a_n =(2/T) ∫_([T])   f(x)cos(nx)dx  =(2/(2π)) ∫_(−π) ^π  ∣x∣ cos(nx)dx =(2/π) ∫_0 ^π  x cos(nx)dx by parts  ∫_0 ^π  x cos(nx)dx =[(x/n)sin(nx)]_0 ^π  −∫_0 ^π  (1/n)sin(nx)dx  =−(1/n)[−(1/n)cos(nx)]_0 ^π  =(1/n^2 ){(−1)^n −1} ⇒a_(2n) =0 and a_(2n+1) =−(2/n^2 )(2/π) =((−4)/(π(2n+1)^2 ))  a_0 =(2/π)∫_0 ^π  xdx =(2/π)[(π^2 /2)] =π ⇒  ∣x∣ =(π/2) −(4/π)Σ_(n=0) ^∞   ((cos(2n+1)x)/((2n+1)^2 ))  x=0 ⇒(π/2) −(4/π) Σ_(n=0) ^∞  (1/((2n+1)^2 )) =0 ⇒(4/π)Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(π/2) ⇒  Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(π^2 /8)  we have Σ_(n=1) ^∞  (1/n^2 ) =(1/4)Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒  (1−(1/4))Σ_(n=1) ^∞  (1/n^2 ) =(π^2 /8) ⇒(3/4) Σ_(n=1) ^∞ (1/n^2 ) =(π^2 /8) ⇒Σ_(n=1) ^∞  (1/n^2 ) =((4π^2 )/(24)) =(π^2 /6) .

$${let}\:{consider}\:\:{f}\left({x}\right)=\mid{x}\mid\:,\mathrm{2}\pi\:{periodic}\:\:{even}\:\:{we}\:{have}\: \\ $$$${f}\left({x}\right)\:=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} {cos}\left({nx}\right)\:\:{with}\:{a}_{{n}} =\frac{\mathrm{2}}{{T}}\:\int_{\left[{T}\right]} \:\:{f}\left({x}\right){cos}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}\pi}\:\int_{−\pi} ^{\pi} \:\mid{x}\mid\:{cos}\left({nx}\right){dx}\:=\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{x}\:{cos}\left({nx}\right){dx}\:{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:{x}\:{cos}\left({nx}\right){dx}\:=\left[\frac{{x}}{{n}}{sin}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:−\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{1}}{{n}}{sin}\left({nx}\right){dx} \\ $$$$=−\frac{\mathrm{1}}{{n}}\left[−\frac{\mathrm{1}}{{n}}{cos}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left\{\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right\}\:\Rightarrow{a}_{\mathrm{2}{n}} =\mathrm{0}\:{and}\:{a}_{\mathrm{2}{n}+\mathrm{1}} =−\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\frac{\mathrm{2}}{\pi}\:=\frac{−\mathrm{4}}{\pi\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${a}_{\mathrm{0}} =\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\pi} \:{xdx}\:=\frac{\mathrm{2}}{\pi}\left[\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\right]\:=\pi\:\Rightarrow \\ $$$$\mid{x}\mid\:=\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{4}}{\pi}\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}{n}+\mathrm{1}\right){x}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${x}=\mathrm{0}\:\Rightarrow\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{4}}{\pi}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:=\mathrm{0}\:\Rightarrow\frac{\mathrm{4}}{\pi}\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$${we}\:{have}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{4}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right)\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:\Rightarrow\frac{\mathrm{3}}{\mathrm{4}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:\Rightarrow\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{\mathrm{4}\pi^{\mathrm{2}} }{\mathrm{24}}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:. \\ $$$$ \\ $$$$ \\ $$

Commented by Tawa1 last updated on 25/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com