Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62437 by mathsolverby Abdo last updated on 21/Jun/19

let f(x) =∫_0 ^1  ((arctan(1+xt))/(t^2  +1))dt  determine a explicit form for f(x)  2)calculate ∫_0 ^1  ((arctan(1+2t))/(1+t^2 ))dt

letf(x)=01arctan(1+xt)t2+1dtdetermineaexplicitformforf(x)2)calculate01arctan(1+2t)1+t2dt

Commented by mathmax by abdo last updated on 28/Jun/19

1) we have f^′ (x) =∫_0 ^1   (t/((1+x^2 t^2 )(t^2  +1)))dt =_(xt =u)      ∫_0 ^x    (u/(x(1+u^2 )(1+(u^2 /x^2 )))) (du/x)  =∫_0 ^x     ((udu)/((1+u^2 )(x^2  +u^2 )))  let decompose F(u) =(u/((u^2  +1)(u^2  +x^2 ))) ⇒  F(u) =((au +b)/(u^2  +1)) +((cu +d)/(u^2  +x^2 ))  F(−u) =−F(u)⇒((−au +b)/(u^2  +1)) +((−cu +d)/(u^2  +x^2 )) =((−au−b)/(u^2  +1)) +((−cu−d)/(u^2  +x^2 )) ⇒b=d =0 ⇒  F(u) =((au)/(u^2  +1)) +((cu)/(u^2  +x^2 ))  lim_(u→+∞) uF(u) =0 =a+c ⇒c=−a ⇒F(u) =((au)/(u^2  +1)) −((au)/(u^2  +x^2 ))  F(1) =(1/(2(x^2  +1))) =(a/2) −(a/(x^2  +1)) ⇒((ax^2  +a−2a)/(2(x^(2 ) +1))) =(1/(2(x^2  +1))) ⇒ax^2 −a =1 ⇒  a(x^2 −1) =1 ⇒ a =(1/(x^2 −1))   (we suppose x≠+^− 1 and x≠0) ⇒  F(u) =(1/(x^2 −1)){(u/(u^2  +1)) −(u/(u^2  +x^2 ))}⇒f^′ (x) =∫_0 ^x  F(u)du  =(1/(x^2 −1)) { ∫_0 ^x   ((udu)/(u^2  +1)) −∫_0 ^x   ((udu)/(u^2  +x^2 ))}  we have  ∫_0 ^x  ((udu)/(u^2  +1)) =[(1/2)ln(u^2  +1)]_0 ^x  =(1/2)ln(x^2  +1)  ∫_0 ^x   ((udu)/(u^2  +x^2 )) =_(u =xα)     ∫_0 ^1     ((xα xdα)/(x^2 (1+α^2 ))) =∫_0 ^1  ((αdα)/(1+α^2 )) =[(1/2)ln(1+α^2 )]_0 ^1  =((ln(2))/2) ⇒  f^′ (x) =((ln(x^2  +1))/(2(x^2 −1))) −((ln(2))/(2(x^2 −1))) ⇒f(x) =∫  ((ln(1+x^2 ))/(2(x^2 −1)))dx −((ln(2))/2) ∫  (dx/(x^2  −1)) +c  .....be continued....

1)wehavef(x)=01t(1+x2t2)(t2+1)dt=xt=u0xux(1+u2)(1+u2x2)dux=0xudu(1+u2)(x2+u2)letdecomposeF(u)=u(u2+1)(u2+x2)F(u)=au+bu2+1+cu+du2+x2F(u)=F(u)au+bu2+1+cu+du2+x2=aubu2+1+cudu2+x2b=d=0F(u)=auu2+1+cuu2+x2limu+uF(u)=0=a+cc=aF(u)=auu2+1auu2+x2F(1)=12(x2+1)=a2ax2+1ax2+a2a2(x2+1)=12(x2+1)ax2a=1a(x21)=1a=1x21(wesupposex+1andx0)F(u)=1x21{uu2+1uu2+x2}f(x)=0xF(u)du=1x21{0xuduu2+10xuduu2+x2}wehave0xuduu2+1=[12ln(u2+1)]0x=12ln(x2+1)0xuduu2+x2=u=xα01xαxdαx2(1+α2)=01αdα1+α2=[12ln(1+α2)]01=ln(2)2f(x)=ln(x2+1)2(x21)ln(2)2(x21)f(x)=ln(1+x2)2(x21)dxln(2)2dxx21+c.....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com