All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 62437 by mathsolverby Abdo last updated on 21/Jun/19
letf(x)=∫01arctan(1+xt)t2+1dtdetermineaexplicitformforf(x)2)calculate∫01arctan(1+2t)1+t2dt
Commented by mathmax by abdo last updated on 28/Jun/19
1)wehavef′(x)=∫01t(1+x2t2)(t2+1)dt=xt=u∫0xux(1+u2)(1+u2x2)dux=∫0xudu(1+u2)(x2+u2)letdecomposeF(u)=u(u2+1)(u2+x2)⇒F(u)=au+bu2+1+cu+du2+x2F(−u)=−F(u)⇒−au+bu2+1+−cu+du2+x2=−au−bu2+1+−cu−du2+x2⇒b=d=0⇒F(u)=auu2+1+cuu2+x2limu→+∞uF(u)=0=a+c⇒c=−a⇒F(u)=auu2+1−auu2+x2F(1)=12(x2+1)=a2−ax2+1⇒ax2+a−2a2(x2+1)=12(x2+1)⇒ax2−a=1⇒a(x2−1)=1⇒a=1x2−1(wesupposex≠+−1andx≠0)⇒F(u)=1x2−1{uu2+1−uu2+x2}⇒f′(x)=∫0xF(u)du=1x2−1{∫0xuduu2+1−∫0xuduu2+x2}wehave∫0xuduu2+1=[12ln(u2+1)]0x=12ln(x2+1)∫0xuduu2+x2=u=xα∫01xαxdαx2(1+α2)=∫01αdα1+α2=[12ln(1+α2)]01=ln(2)2⇒f′(x)=ln(x2+1)2(x2−1)−ln(2)2(x2−1)⇒f(x)=∫ln(1+x2)2(x2−1)dx−ln(2)2∫dxx2−1+c.....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com