Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 62438 by mathsolverby Abdo last updated on 21/Jun/19

splve x^2 y^(′′)  −(x+1)y′   =(x+1)e^(−x)

splvex2y(x+1)y=(x+1)ex

Commented by mathmax by abdo last updated on 27/Jul/19

let y^′  =z  (e) ⇒x^2 z^′ −(x+1)z =(x+1)e^(−x)   (he) ⇒x^2 z^′ −(x+1)z =0 ⇒x^2 z^′  =(x+1)z ⇒(z^′ /z) =((x+1)/x^2 ) =(1/x) +(1/x^2 )  ⇒ln∣z∣ =ln∣x∣−(1/x) +c ⇒z = k∣x∣e^(−(1/x))   let determine the solution on ]0,+∞[ ⇒z(x) =kx e^(−(1/x))   mvc method →z^′  =k^′ x e^(−(1/x))  +k{e^(−(1/x))  +x(1/x^2 )e^(−(1/x)) }  ={k^′ x +k  +(k/x)}e^(−(1/x))   (e) ⇒x^2 {k^′ x +k +(k/x)}e^(−(1/x))  −(x+1)kx e^(−(1/x))  =(x+1)e^(−x)  ⇒  {k^′  x^3  +kx^2 + kx−kx^2 −kx}e^(−(1/x))  =(x+1)e^(−x)  ⇒  k^′ x^3  =(x+1)e^(−x+(1/x))  ⇒k^′  =((x+1)/x^3 ) e^((1−x^2 )/x)   ⇒k(x) =∫_. ^x  ((t+1)/t^3 )e^((1−t^2 )/t)  dt +λ  ⇒z(x) =x e^(−(1/x)) { ∫_. ^x  ((t+1)/t^3 )e^((1−t^2 )/t) dt +λ}=λx e^(−(1/x))  +xe^(−(1/x))  ∫_. ^x  ((t+1)/t^3 )e^((1−t^2 )/t)  dt  y^′ (x)=z(x) ⇒y(x) =∫ z(x)dx +C  y(x)=∫  λx e^(−(1/x))  dx   +∫    (xe^(−(1/x))  ∫_. ^x  ((t+1)/t^3 ) e^((1−t^2 )/t)  dt)dx +C .

lety=z(e)x2z(x+1)z=(x+1)ex(he)x2z(x+1)z=0x2z=(x+1)zzz=x+1x2=1x+1x2lnz=lnx1x+cz=kxe1xletdeterminethesolutionon]0,+[z(x)=kxe1xmvcmethodz=kxe1x+k{e1x+x1x2e1x}={kx+k+kx}e1x(e)x2{kx+k+kx}e1x(x+1)kxe1x=(x+1)ex{kx3+kx2+kxkx2kx}e1x=(x+1)exkx3=(x+1)ex+1xk=x+1x3e1x2xk(x)=.xt+1t3e1t2tdt+λz(x)=xe1x{.xt+1t3e1t2tdt+λ}=λxe1x+xe1x.xt+1t3e1t2tdty(x)=z(x)y(x)=z(x)dx+Cy(x)=λxe1xdx+(xe1x.xt+1t3e1t2tdt)dx+C.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com