Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 62440 by mathsolverby Abdo last updated on 21/Jun/19

let h(x)= arctan(x+(1/x))  1)calculate h^((n)) (x) and h^((n)) (1)  2)developp f(x)at integr serie at x_0 =1

leth(x)=arctan(x+1x)1)calculateh(n)(x)andh(n)(1)2)developpf(x)atintegrserieatx0=1

Commented by mathmax by abdo last updated on 23/Jun/19

1) we have h^′ (x)=((1−(1/x^2 ))/(1+(x+(1/x))^2 )) =((x^2 −1)/(x^2  +(x^2  +1)^2 )) =((x^2 −1)/(x^2  +x^4  +2x^2 +1)) =((x^2 −1)/(x^4  +3x^2  +1))  x^2 =t ⇒h^′ (x) =g(t) =((t−1)/(t^2  +3t +1))  Δ =9−4 =5 ⇒t_1 =((−3+(√5))/2)  and t_2 =((−3−(√5))/2) ⇒g(t) =((t−1)/((t−t_1 )(t−t_2 )))  =((x^2 −1)/((x^2 −((−3+(√5))/2))(x^2  +((3+(√5))/2)))) =((x^2 −1)/((x^2 +((3−(√5))/2))(x^2  +((3+(√5))/2))))  =(x^2 −1)(1/(√5)){ (1/(x^2  +((3−(√5))/2))) −(1/(x^2  +((3+(√5))/2)))} =(1/(√5)){  ((x^2 −1)/(x^2  +((3−(√5))/2))) −((x^2 −1)/(x^2  +((3+(√5))/2)))}  =(1/(√5)){ 1−((1+((3−(√5))/2))/(x^2  +((3−(√5))/2))) −(1−((1+((3+(√5))/2))/(x^2  +((3+(√5))/2))))}  =((5−(√5))/(2(√5))){ (1/(x^2 +((3−(√5))/2)))} +((5+(√5))/(2(√5))){  (1/(x^2  +((3+(√5))/2)))} let  α =(√((3−(√5))/2))  and β =(√((3+(√5))/2))  ⇒h^′ (x)=(((√5)−1)/2){    (1/(x^2  +α^2 )) +(1/(x^2  +β^2 ))}  =(((√5)−1)/2){  (1/((x+iα)(x−iα))) +(1/((x−iβ)(x+iβ)))}  =(((√5)−1)/2){  (1/(2iα)) ((1/(x−iα)) −(1/(x+iα))) +(1/(2iβ))( (1/(x−iβ)) −(1/(x+iβ)))}⇒  h^((n)) (x) =(((√5)−1)/(4iα)){ ((1/(x−iα)))^((n−1)) −((1/(x+iα)))^(n−1) }+(((√5)−1)/(4iβ)){ ((1/(x−iβ)))^((n−1)) −((1/(x+iβ)))^((n−1)) }  =(((√5)−1)/(4iα)){  (((−1)^(n−1) (n−1)!)/((x−iα)^n )) −(((−1)^(n−1) (n−1)!)/((x+iα)^n ))}  +(((√5)−1)/(4iβ)){ (((−1)^(n−1) (n−1)!)/((x−iβ)^n )) −(((−1)^(n−1) (n−1)!)/((x+iβ)^n ))}  =((((√5)−1)(−1)^(n−1) (n−1)!)/(4i)){(1/α)(  (1/((x−iα)^n )) −(1/((x+iα)^n ))) +(1/β)((1/((x−iβ)^n )) −(1/((x+iβ)^n )))}  =((((√5)−1)(−1)^(n−1) (n−1)!)/(4i)){((2i)/α) ((Im(x+iα)^n )/((x^2  +α^2 )^n )) +((2i)/β) ((Im(x+iβ)^n )/((x^2  +β^2 )^n ))}  h^((n)) (x)=(((√5)−1)/2)(−1)^(n−1) (n−1)!{ ((Im(x+iα)^n )/(α(x^2  +α^2 )^n )) +((Im(x+iβ)^n )/((x^2  +β^2 )^n ))}  h^((n)) (1) =(((√5)−1)/2)(−1)^(n−1) (n−1)!{ ((Im(1+iα)^n )/(α(1+α^2 )^n )) +((Im(1+iβ)^n )/((1+β^2 )^n ))} .  3)h(x) =Σ_(n=0) ^∞   ((h^((n)) (1))/(n!))(x−1)^n     and h^((n)) (1) is known.

1)wehaveh(x)=11x21+(x+1x)2=x21x2+(x2+1)2=x21x2+x4+2x2+1=x21x4+3x2+1x2=th(x)=g(t)=t1t2+3t+1Δ=94=5t1=3+52andt2=352g(t)=t1(tt1)(tt2)=x21(x23+52)(x2+3+52)=x21(x2+352)(x2+3+52)=(x21)15{1x2+3521x2+3+52}=15{x21x2+352x21x2+3+52}=15{11+352x2+352(11+3+52x2+3+52)}=5525{1x2+352}+5+525{1x2+3+52}letα=352andβ=3+52h(x)=512{1x2+α2+1x2+β2}=512{1(x+iα)(xiα)+1(xiβ)(x+iβ)}=512{12iα(1xiα1x+iα)+12iβ(1xiβ1x+iβ)}h(n)(x)=514iα{(1xiα)(n1)(1x+iα)n1}+514iβ{(1xiβ)(n1)(1x+iβ)(n1)}=514iα{(1)n1(n1)!(xiα)n(1)n1(n1)!(x+iα)n}+514iβ{(1)n1(n1)!(xiβ)n(1)n1(n1)!(x+iβ)n}=(51)(1)n1(n1)!4i{1α(1(xiα)n1(x+iα)n)+1β(1(xiβ)n1(x+iβ)n)}=(51)(1)n1(n1)!4i{2iαIm(x+iα)n(x2+α2)n+2iβIm(x+iβ)n(x2+β2)n}h(n)(x)=512(1)n1(n1)!{Im(x+iα)nα(x2+α2)n+Im(x+iβ)n(x2+β2)n}h(n)(1)=512(1)n1(n1)!{Im(1+iα)nα(1+α2)n+Im(1+iβ)n(1+β2)n}.3)h(x)=n=0h(n)(1)n!(x1)nandh(n)(1)isknown.

Commented by mathmax by abdo last updated on 23/Jun/19

error of typo     h^((n)) (x) =(((√5)−1)/2)(−1)^(n−1) (n−1)!{ ((Im(x+iα)^n )/(α(x^2  +α^2 )^n )) +((Im(x+iβ)^n )/(β(x^2  +β^2 )^n ))}.

erroroftypoh(n)(x)=512(1)n1(n1)!{Im(x+iα)nα(x2+α2)n+Im(x+iβ)nβ(x2+β2)n}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com