Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 62452 by Tawa1 last updated on 21/Jun/19

Find the remainder when   2014!  is divisible by  2017

Findtheremainderwhen2014!isdivisibleby2017

Answered by Rasheed.Sindhi last updated on 21/Jun/19

Wilson′s Theorm:         (p−1)!≡−1(mod p) : p∈P     ∵    2017∈P      ∴ (2017−1)!≡−1(mod 2017)            2016!≡−1(mod 2017)                 2016!≡−1+2017=2016(mod 2017)            2015!≡1(mod 2017)            2(2015!)≡2(mod 2017)            2(2015!)≡2−2017=−2015(mod 2017)            2(2014!)≡−1(mod 2017)            2(2014!)≡−1+2017=2016(mod 2017)            2014!≡2016/2(mod 2017)            2014!≡1008(mod 2017)        Remainder 1008

WilsonsTheorm:(p1)!1(modp):pP2017P(20171)!1(mod2017)2016!1(mod2017)2016!1+2017=2016(mod2017)2015!1(mod2017)2(2015!)2(mod2017)2(2015!)22017=2015(mod2017)2(2014!)1(mod2017)2(2014!)1+2017=2016(mod2017)2014!2016/2(mod2017)2014!1008(mod2017)Remainder1008

Commented by Tawa1 last updated on 21/Jun/19

God bless you sir

Godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com