Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62455 by aliesam last updated on 21/Jun/19

Commented by mathmax by abdo last updated on 22/Jun/19

S =Σ_(n=1) ^∞  A_n    with A_n =∫_(n−(π/2)) ^(n+(π/2))  e^(−x) ∣cos(x)∣dx   changement x =n−(π/2) +t give  A_n = ∫_0 ^π    e^(−(n−(π/2)+t)))  ∣cos((π/2)−(n+t))∣dt               = e^((π/2)−n)  ∫_0 ^π   e^(−t)   ∣sin(n+t)∣ dt      if we suppose sin(n+t)≥0 on[0,π]( that need  a proof) ⇒A_n = e^((π/2)−n)  ∫_0 ^π (sin(n)cos(t) +cos(n)sin(t))dt  =sin(n) e^((π/2)−n)  ∫_0 ^π  cost dt+cos(n) e^((π/2)−n)  ∫_0 ^π  sint dt  =0 +cos(n) e^((π/2)−n)  [−cost]_0 ^π  =2 cos(n) e^((π/2)−n)  ⇒  S =2Σ_(n=1) ^∞   cos(n)e^((π/2)−n)  =2 e^(π/2)  Σ_(n=1) ^∞  e^(−n)  cos(n)  =2 e^(π/2)  (Σ_(n=0) ^∞   e^(−n)  cos(n)−1)  but  Σ_(n=0) ^∞  e^(−n)  cosn =Re( Σ_(n=0) ^∞  e^(−n+in) ) =Re(Σ_(n=0) ^∞  (e^(−1+i) )^n )  we have ∣e^(−1 +i) ∣ =(1/e)<1 ⇒  Σ_(n=0) ^∞ (e^(−1+i) )^n  =(1/(1−e^(−1+i) )) =(1/(1−e^(−1) (cos(1) +isin(1))))  =(1/(1−e^(−1) cos(1)−ie^(−1) sin(1))) =((1−e^(−1) cos(1)+e^(−1)  sin(1))/((1−e^(−1) cos(1))^2  +e^(−2)  sin^2 (1))) ⇒  Σ_(n=0) ^∞  e^(−n)  cos(n) =((1−e^(−1)  cos(1))/((1−e^(−1)  cos(1))^2  +e^(−2) sin^2 (1))) ⇒  S =2 e^(π/2) { ((1−e^(−1)  cos(1))/(1−2e^(−1)  cos(1) +e^(−2) )) −1} .

$${S}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{A}_{{n}} \:\:\:{with}\:{A}_{{n}} =\int_{{n}−\frac{\pi}{\mathrm{2}}} ^{{n}+\frac{\pi}{\mathrm{2}}} \:{e}^{−{x}} \mid{cos}\left({x}\right)\mid{dx}\:\:\:{changement}\:{x}\:={n}−\frac{\pi}{\mathrm{2}}\:+{t}\:{give} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\:{e}^{\left.−\left({n}−\frac{\pi}{\mathrm{2}}+{t}\right)\right)} \:\mid{cos}\left(\frac{\pi}{\mathrm{2}}−\left({n}+{t}\right)\right)\mid{dt}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$=\:{e}^{\frac{\pi}{\mathrm{2}}−{n}} \:\int_{\mathrm{0}} ^{\pi} \:\:{e}^{−{t}} \:\:\mid{sin}\left({n}+{t}\right)\mid\:{dt}\:\:\:\:\:\:{if}\:{we}\:{suppose}\:{sin}\left({n}+{t}\right)\geqslant\mathrm{0}\:{on}\left[\mathrm{0},\pi\right]\left(\:{that}\:{need}\right. \\ $$$$\left.{a}\:{proof}\right)\:\Rightarrow{A}_{{n}} =\:{e}^{\frac{\pi}{\mathrm{2}}−{n}} \:\int_{\mathrm{0}} ^{\pi} \left({sin}\left({n}\right){cos}\left({t}\right)\:+{cos}\left({n}\right){sin}\left({t}\right)\right){dt} \\ $$$$={sin}\left({n}\right)\:{e}^{\frac{\pi}{\mathrm{2}}−{n}} \:\int_{\mathrm{0}} ^{\pi} \:{cost}\:{dt}+{cos}\left({n}\right)\:{e}^{\frac{\pi}{\mathrm{2}}−{n}} \:\int_{\mathrm{0}} ^{\pi} \:{sint}\:{dt} \\ $$$$=\mathrm{0}\:+{cos}\left({n}\right)\:{e}^{\frac{\pi}{\mathrm{2}}−{n}} \:\left[−{cost}\right]_{\mathrm{0}} ^{\pi} \:=\mathrm{2}\:{cos}\left({n}\right)\:{e}^{\frac{\pi}{\mathrm{2}}−{n}} \:\Rightarrow \\ $$$${S}\:=\mathrm{2}\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{cos}\left({n}\right){e}^{\frac{\pi}{\mathrm{2}}−{n}} \:=\mathrm{2}\:{e}^{\frac{\pi}{\mathrm{2}}} \:\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−{n}} \:{cos}\left({n}\right) \\ $$$$=\mathrm{2}\:{e}^{\frac{\pi}{\mathrm{2}}} \:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{e}^{−{n}} \:{cos}\left({n}\right)−\mathrm{1}\right)\:\:{but} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{n}} \:{cosn}\:={Re}\left(\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{n}+{in}} \right)\:={Re}\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({e}^{−\mathrm{1}+{i}} \right)^{{n}} \right)\:\:{we}\:{have}\:\mid{e}^{−\mathrm{1}\:+{i}} \mid\:=\frac{\mathrm{1}}{{e}}<\mathrm{1}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \left({e}^{−\mathrm{1}+{i}} \right)^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}+{i}} }\:=\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} \left({cos}\left(\mathrm{1}\right)\:+{isin}\left(\mathrm{1}\right)\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} {cos}\left(\mathrm{1}\right)−{ie}^{−\mathrm{1}} {sin}\left(\mathrm{1}\right)}\:=\frac{\mathrm{1}−{e}^{−\mathrm{1}} {cos}\left(\mathrm{1}\right)+{e}^{−\mathrm{1}} \:{sin}\left(\mathrm{1}\right)}{\left(\mathrm{1}−{e}^{−\mathrm{1}} {cos}\left(\mathrm{1}\right)\right)^{\mathrm{2}} \:+{e}^{−\mathrm{2}} \:{sin}^{\mathrm{2}} \left(\mathrm{1}\right)}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{n}} \:{cos}\left({n}\right)\:=\frac{\mathrm{1}−{e}^{−\mathrm{1}} \:{cos}\left(\mathrm{1}\right)}{\left(\mathrm{1}−{e}^{−\mathrm{1}} \:{cos}\left(\mathrm{1}\right)\right)^{\mathrm{2}} \:+{e}^{−\mathrm{2}} {sin}^{\mathrm{2}} \left(\mathrm{1}\right)}\:\Rightarrow \\ $$$${S}\:=\mathrm{2}\:{e}^{\frac{\pi}{\mathrm{2}}} \left\{\:\frac{\mathrm{1}−{e}^{−\mathrm{1}} \:{cos}\left(\mathrm{1}\right)}{\mathrm{1}−\mathrm{2}{e}^{−\mathrm{1}} \:{cos}\left(\mathrm{1}\right)\:+{e}^{−\mathrm{2}} }\:−\mathrm{1}\right\}\:. \\ $$$$ \\ $$

Commented by aliesam last updated on 22/Jun/19

thank you sir brilliant solution

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{brilliant}\:\mathrm{solution} \\ $$

Commented by mathmax by abdo last updated on 22/Jun/19

you are welcome sir.

$${you}\:{are}\:{welcome}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com