Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 62468 by bshahid010@gmail.com last updated on 21/Jun/19

Commented by mathmax by abdo last updated on 21/Jun/19

let 3^x  =t   ⇒(k−2)t^2 −2t +3>0    ∀t>0 ⇒ Δ^′ <0 ⇒  (−1)^2 −3(k−2)<0 ⇒1−3k +6 <0 ⇒7−3k <0 ⇒k>(7/3)

let3x=t(k2)t22t+3>0t>0Δ<0(1)23(k2)<013k+6<073k<0k>73

Answered by mr W last updated on 21/Jun/19

let t=3^x >0  (k−2)9^x −2∙3^x +3  =(k−2)t^2 −2t+3  =(k−2)[t^2 −((2t)/(k−2))+((1/(k−2)))^2 ]+3−(1/(k−2))  =(k−2)(t−(1/(k−2)))^2 +3−(1/(k−2))  such that it is always >0, we must  have k−2>0 ∧3−(1/(k−2))>0  ⇒k>2  and  ⇒3>(1/(k−2))⇒k−2>(1/3)⇒k>2+(1/3)=(7/3)  ⇒answer is k>(7/3)

lett=3x>0(k2)9x23x+3=(k2)t22t+3=(k2)[t22tk2+(1k2)2]+31k2=(k2)(t1k2)2+31k2suchthatitisalways>0,wemusthavek2>031k2>0k>2and3>1k2k2>13k>2+13=73answerisk>73

Terms of Service

Privacy Policy

Contact: info@tinkutara.com