Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 6248 by FilupSmith last updated on 20/Jun/16

∫_(−∞) ^( ∞) e^(−u) u^n du = ???

$$\int_{−\infty} ^{\:\infty} {e}^{−{u}} {u}^{{n}} {du}\:=\:??? \\ $$

Commented by 123456 last updated on 20/Jun/16

i think that it diverges

$$\mathrm{i}\:\mathrm{think}\:\mathrm{that}\:\mathrm{it}\:\mathrm{diverges} \\ $$

Commented by FilupSmith last updated on 21/Jun/16

How can we check this?

$$\mathrm{How}\:\mathrm{can}\:\mathrm{we}\:\mathrm{check}\:\mathrm{this}? \\ $$

Commented by nburiburu last updated on 24/Jun/16

It can be solved by parts:  ∫u.dv=u.v−∫v.du  with  u=x^n  → du=n.x^(n−1)   dv= e^(−x) dx→ v=−e^(−x)   since u has a degree of n it needs to derivate n times.  So, inductively:  ∫e^(−x) x^n  dx= −e^(−x) x^n −ne^(−x) x^(n−1) −n(n−1)e^(−x) x^(n−2) −...−((n!)/((n−i)!)) e^(−x) x^(n−i) −...−n! e^(−x)   ∫e^(−x) x^n dx=−e^(−x)  Σ_(i=0) ^n ((n!)/((n−i)!)) x^(n−i)   Lastly  ∫_(−∞) ^(+∞) e^(−x)  x^n dx=(−e^(−x) Σ_(i=0) ^n ((n!)/((n−i)!))x^(n−i) )∣_(−∞) ^(+∞)  =  =−[ lim_(x→+∞)  (Σ_(i=0) ^n ((n!)/((n−i)!)) x^(n−i) )/e^x  −lim_(x→−∞) (Σ_(i=0) ^n ((n!)/((n−i)!)) x^(n−i) )/e^x  ]=  = 0 + ∞ = +∞  The first limit gives 0 because it is a polinomial divided exponential and using L′hospital theorem can be demonstrated.  The last limit gives ∞/0 =+∞

$${It}\:{can}\:{be}\:{solved}\:{by}\:{parts}: \\ $$$$\int{u}.{dv}={u}.{v}−\int{v}.{du} \\ $$$${with} \\ $$$${u}={x}^{{n}} \:\rightarrow\:{du}={n}.{x}^{{n}−\mathrm{1}} \\ $$$${dv}=\:{e}^{−{x}} {dx}\rightarrow\:{v}=−{e}^{−{x}} \\ $$$${since}\:{u}\:{has}\:{a}\:{degree}\:{of}\:{n}\:{it}\:{needs}\:{to}\:{derivate}\:{n}\:{times}. \\ $$$${So},\:{inductively}: \\ $$$$\int{e}^{−{x}} {x}^{{n}} \:{dx}=\:−{e}^{−{x}} {x}^{{n}} −{ne}^{−{x}} {x}^{{n}−\mathrm{1}} −{n}\left({n}−\mathrm{1}\right){e}^{−{x}} {x}^{{n}−\mathrm{2}} −...−\frac{{n}!}{\left({n}−{i}\right)!}\:{e}^{−{x}} {x}^{{n}−{i}} −...−{n}!\:{e}^{−{x}} \\ $$$$\int{e}^{−{x}} {x}^{{n}} {dx}=−{e}^{−{x}} \:\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}!}{\left({n}−{i}\right)!}\:{x}^{{n}−{i}} \\ $$$${Lastly} \\ $$$$\int_{−\infty} ^{+\infty} {e}^{−{x}} \:{x}^{{n}} {dx}=\left(−{e}^{−{x}} \underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}!}{\left({n}−{i}\right)!}{x}^{{n}−{i}} \right)\mid_{−\infty} ^{+\infty} \:= \\ $$$$=−\left[\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:\left(\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}!}{\left({n}−{i}\right)!}\:{x}^{{n}−{i}} \right)/{e}^{{x}} \:−\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\left(\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}!}{\left({n}−{i}\right)!}\:{x}^{{n}−{i}} \right)/{e}^{{x}} \:\right]= \\ $$$$=\:\mathrm{0}\:+\:\infty\:=\:+\infty \\ $$$${The}\:{first}\:{limit}\:{gives}\:\mathrm{0}\:{because}\:{it}\:{is}\:{a}\:{polinomial}\:{divided}\:{exponential}\:{and}\:{using}\:{L}'{hospital}\:{theorem}\:{can}\:{be}\:{demonstrated}. \\ $$$${The}\:{last}\:{limit}\:{gives}\:\infty/\mathrm{0}\:=+\infty \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com