Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 62486 by ajfour last updated on 21/Jun/19

Commented by ajfour last updated on 21/Jun/19

Find maximum perimeter of  quadrilateral ABCD.

FindmaximumperimeterofquadrilateralABCD.

Answered by mr W last updated on 22/Jun/19

p=(√(a^2 +b^2 −2ab cos θ))+(√(b^2 +c^2 −2bc cos ϕ))+(√(c^2 +d^2 −2cd cos φ))+(√(d^2 +a^2 −2da cos (2π−θ−ϕ−φ)))  (∂p/∂θ)=((ab sin θ)/(√(a^2 +b^2 −2ab cos θ)))−((da sin (2π−θ−ϕ−φ))/(√(d^2 +a^2 −2da cos (2π−θ−ϕ−φ))))=0  (∂p/∂ϕ)=((bc sin ϕ)/(√(b^2 +c^2 −2bc cos ϕ)))−((da sin (2π−θ−ϕ−φ))/(√(d^2 +a^2 −2da cos (2π−θ−ϕ−φ))))=0  (∂p/∂φ)=((cd sin φ)/(√(c^2 +d^2 −2cd cos φ)))−((da sin (2π−θ−ϕ−φ))/(√(d^2 +a^2 −2da cos (2π−θ−ϕ−φ))))=0  ((ab sin θ)/(√(a^2 +b^2 −2ab cos θ)))=((da sin (2π−θ−ϕ−φ))/(√(d^2 +a^2 −2da cos (2π−θ−ϕ−φ))))=(√k)  a^2 b^2 sin^2  θ=k(a^2 +b^2 −2ab cos θ)  a^2 b^2 (1−cos^2  θ)=k(a^2 +b^2 −2ab cos θ)  a^2 b^2  cos^2  θ−2abk cos θ+(a^2 +b^2 )k−a^2 b^2 =0  cos θ=((abk−(√(a^2 b^2 k^2 −a^2 b^2 [(a^2 +b^2 )k−a^2 b^2 ])))/(a^2 b^2 ))  ⇒cos θ=((k−(√(k^2 −(a^2 +b^2 )k+a^2 b^2 )))/(ab))  ⇒θ=cos^(−1) ((k−(√(k^2 −(a^2 +b^2 )k+a^2 b^2 )))/(ab))  ⇒ϕ=cos^(−1) ((k−(√(k^2 −(b^2 +c^2 )k+b^2 c^2 )))/(bc))  ⇒φ=cos^(−1) ((k−(√(k^2 −(c^2 +d^2 )k+c^2 d^2 )))/(cd))  ⇒2π−(θ+ϕ+φ)=cos^(−1) ((k−(√(k^2 −(d^2 +a^2 )k+d^2 a^2 )))/da)  we get k...  example: a=10, b=8, c=6, d=5  ⇒k=21.2423  ⇒θ=117.3773°  ⇒ϕ=94.6335°  ⇒φ=62.6226°

p=a2+b22abcosθ+b2+c22bccosφ+c2+d22cdcosϕ+d2+a22dacos(2πθφϕ)pθ=absinθa2+b22abcosθdasin(2πθφϕ)d2+a22dacos(2πθφϕ)=0pφ=bcsinφb2+c22bccosφdasin(2πθφϕ)d2+a22dacos(2πθφϕ)=0pϕ=cdsinϕc2+d22cdcosϕdasin(2πθφϕ)d2+a22dacos(2πθφϕ)=0absinθa2+b22abcosθ=dasin(2πθφϕ)d2+a22dacos(2πθφϕ)=ka2b2sin2θ=k(a2+b22abcosθ)a2b2(1cos2θ)=k(a2+b22abcosθ)a2b2cos2θ2abkcosθ+(a2+b2)ka2b2=0cosθ=abka2b2k2a2b2[(a2+b2)ka2b2]a2b2cosθ=kk2(a2+b2)k+a2b2abθ=cos1kk2(a2+b2)k+a2b2abφ=cos1kk2(b2+c2)k+b2c2bcϕ=cos1kk2(c2+d2)k+c2d2cd2π(θ+φ+ϕ)=cos1kk2(d2+a2)k+d2a2dawegetk...example:a=10,b=8,c=6,d=5k=21.2423θ=117.3773°φ=94.6335°ϕ=62.6226°

Commented by peter frank last updated on 22/Jun/19

congratulation sir for hard work

congratulationsirforhardwork

Commented by ajfour last updated on 22/Jun/19

Thanks Sir, but i wished, we could  crack it by some geometrical way?  Thank you anyway.

ThanksSir,butiwished,wecouldcrackitbysomegeometricalway?Thankyouanyway.

Answered by mr W last updated on 23/Jun/19

O should be the incircle center such  that the quadrilateral has maximum  perimeter (see Q62542)  let r=radius of the incircle  ∠A=2 sin^(−1) (r/a)  ∠B=2 sin^(−1) (r/b)  ∠C=2 sin^(−1) (r/c)  ∠D=2 sin^(−1) (r/d)  ∠A+∠B+∠C+∠D=2π  sin^(−1) (r/a)+sin^(−1) (r/b)+sin^(−1) (r/c)+sin^(−1) (r/d)=π  cos (sin^(−1) (r/a)+sin^(−1) (r/b))=cos (π−sin^(−1) (r/c)−sin^(−1) (r/d))  (√((1−(r^2 /a^2 ))(1−(r^2 /b^2 ))))−(r^2 /(ab))=−(√((1−(r^2 /c^2 ))(1−(r^2 /d^2 ))))+(r^2 /(cd))  (√((1−(r^2 /a^2 ))(1−(r^2 /b^2 ))))−(√((1−(r^2 /c^2 ))(1−(r^2 /d^2 ))))=(r^2 /(ab))+(r^2 /(cd))  (1−(r^2 /a^2 ))(1−(r^2 /b^2 ))+(1−(r^2 /c^2 ))(1−(r^2 /d^2 ))−2(√((1−(r^2 /a^2 ))(1−(r^2 /b^2 ))(1−(r^2 /c^2 ))(1−(r^2 /d^2 ))))=(r^4 /(a^2 b^2 ))+(r^4 /(c^2 d^2 ))+((2r^4 )/(abcd))  2−((r^2 /a^2 )+(r^2 /b^2 )+(r^2 /c^2 )+(r^2 /d^2 ))+(r^4 /(a^2 b^2 ))+(r^4 /(c^2 d^2 ))−2(√((1−(r^2 /a^2 ))(1−(r^2 /b^2 ))(1−(r^2 /c^2 ))(1−(r^2 /d^2 ))))=(r^4 /(a^2 b^2 ))+(r^4 /(c^2 d^2 ))+((2r^4 )/(abcd))  (√((1−(r^2 /a^2 ))(1−(r^2 /b^2 ))(1−(r^2 /c^2 ))(1−(r^2 /d^2 ))))=1−(1/2)((1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 ))r^2 −(r^4 /(abcd))  [1−((r^2 /a^2 )+(r^2 /b^2 ))+(r^4 /(a^2 b^2 ))][1−((r^2 /c^2 )+(r^2 /d^2 ))+(r^4 /(c^2 d^2 ))]=1+(1/4)((1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 ))^2 r^4 +(r^8 /(a^2 b^2 c^2 d^2 ))−((2r^4 )/(abcd))−((1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 ))r^2 +(1/(abcd))((1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 ))r^6   1−((r^2 /a^2 )+(r^2 /b^2 ))+(r^4 /(a^2 b^2 ))−((r^2 /c^2 )+(r^2 /d^2 ))+((r^2 /a^2 )+(r^2 /b^2 ))((r^2 /c^2 )+(r^2 /d^2 ))−(r^4 /(a^2 b^2 ))((r^2 /c^2 )+(r^2 /d^2 ))+(r^4 /(c^2 d^2 ))−(r^4 /(c^2 d^2 ))((r^2 /a^2 )+(r^2 /b^2 ))+(r^8 /(a^2 b^2 c^2 d^2 ))=1+(1/4)((1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 ))^2 r^4 +(r^8 /(a^2 b^2 c^2 d^2 ))−((2r^4 )/(abcd))−((1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 ))r^2 +(1/(abcd))((1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 ))r^6   ((1/(a^2 b^2 ))+(1/(a^2 c^2 ))+(1/(a^2 d^2 ))+(1/(b^2 c^2 ))+(1/(b^2 d^2 ))+(1/(c^2 d^2 )))−(((a^2 +b^2 +c^2 +d^2 )/(a^2 b^2 c^2 d^2 )))r^2 =(1/4)((1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 ))^2 −(2/(abcd))+(1/(abcd))((1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 ))r^2   ⇒[(1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 )+((a^2 +b^2 +c^2 +d^2 )/(abcd))]r^2 =2+(((cd)/(ab))+((ab)/(cd))+((bd)/(ac))+((bc)/(ad))+((ad)/(bc))+((ac)/(bd)))−((abcd)/4)((1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 ))^2   ⇒r=(√((2+(((cd)/(ab))+((ab)/(cd))+((bd)/(ac))+((bc)/(ad))+((ad)/(bc))+((ac)/(bd)))−((abcd)/4)((1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 ))^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )+(1/d^2 )+((a^2 +b^2 +c^2 +d^2 )/(abcd)))))

Oshouldbetheincirclecentersuchthatthequadrilateralhasmaximumperimeter(seeQ62542)letr=radiusoftheincircleA=2sin1raB=2sin1rbC=2sin1rcD=2sin1rdA+B+C+D=2πsin1ra+sin1rb+sin1rc+sin1rd=πcos(sin1ra+sin1rb)=cos(πsin1rcsin1rd)(1r2a2)(1r2b2)r2ab=(1r2c2)(1r2d2)+r2cd(1r2a2)(1r2b2)(1r2c2)(1r2d2)=r2ab+r2cd(1r2a2)(1r2b2)+(1r2c2)(1r2d2)2(1r2a2)(1r2b2)(1r2c2)(1r2d2)=r4a2b2+r4c2d2+2r4abcd2(r2a2+r2b2+r2c2+r2d2)+r4a2b2+r4c2d22(1r2a2)(1r2b2)(1r2c2)(1r2d2)=r4a2b2+r4c2d2+2r4abcd(1r2a2)(1r2b2)(1r2c2)(1r2d2)=112(1a2+1b2+1c2+1d2)r2r4abcd[1(r2a2+r2b2)+r4a2b2][1(r2c2+r2d2)+r4c2d2]=1+14(1a2+1b2+1c2+1d2)2r4+r8a2b2c2d22r4abcd(1a2+1b2+1c2+1d2)r2+1abcd(1a2+1b2+1c2+1d2)r61(r2a2+r2b2)+r4a2b2(r2c2+r2d2)+(r2a2+r2b2)(r2c2+r2d2)r4a2b2(r2c2+r2d2)+r4c2d2r4c2d2(r2a2+r2b2)+r8a2b2c2d2=1+14(1a2+1b2+1c2+1d2)2r4+r8a2b2c2d22r4abcd(1a2+1b2+1c2+1d2)r2+1abcd(1a2+1b2+1c2+1d2)r6(1a2b2+1a2c2+1a2d2+1b2c2+1b2d2+1c2d2)(a2+b2+c2+d2a2b2c2d2)r2=14(1a2+1b2+1c2+1d2)22abcd+1abcd(1a2+1b2+1c2+1d2)r2[1a2+1b2+1c2+1d2+a2+b2+c2+d2abcd]r2=2+(cdab+abcd+bdac+bcad+adbc+acbd)abcd4(1a2+1b2+1c2+1d2)2r=2+(cdab+abcd+bdac+bcad+adbc+acbd)abcd4(1a2+1b2+1c2+1d2)21a2+1b2+1c2+1d2+a2+b2+c2+d2abcd

Commented by ajfour last updated on 24/Jun/19

Immensely Beautiful Sir!

ImmenselyBeautifulSir!

Commented by mr W last updated on 23/Jun/19

thanks for checking sir! i had a mistake  in the working, now fixed.  with a=b=c=d we′ll get r=(a/(√2)).

thanksforcheckingsir!ihadamistakeintheworking,nowfixed.witha=b=c=dwellgetr=a2.

Commented by mr W last updated on 23/Jun/19

example: a=10,b=8,c=6,d=5  r=(√((2+(((30)/(80))+((80)/(30))+((40)/(60))+((48)/(50))+((50)/(48))+((60)/(40)))−((2400)/4)((1/(100))+(1/(64))+(1/(36))+(1/(25)))^2 )/((1/(100))+(1/(64))+(1/(36))+(1/(25))+((100+64+36+25)/(2400)))))  r=(√((2+((721)/(100))−600(((269)/(2880)))^2 )/(((269)/(2880))+((225)/(2400)))))=4.60894  θ=180^° −sin^(−1) (r/a)−sin^(−1) (r/b)=117.3773°  ϕ=180°−sin^(−1) (r/b)−sin^(−1) (r/c)=94.6335°  φ=180°−sin^(−1) (r/c)−sin^(−1) (r/d)=62.6227°  the results are the same as using   calculus method.

example:a=10,b=8,c=6,d=5r=2+(3080+8030+4060+4850+5048+6040)24004(1100+164+136+125)21100+164+136+125+100+64+36+252400r=2+721100600(2692880)22692880+2252400=4.60894θ=180°sin1rasin1rb=117.3773°φ=180°sin1rbsin1rc=94.6335°ϕ=180°sin1rcsin1rd=62.6227°theresultsarethesameasusingcalculusmethod.

Commented by ajfour last updated on 24/Jun/19

Its a Discovery then Sir,   Congratulations, and thanks  for sharing it.

ItsaDiscoverythenSir,Congratulations,andthanksforsharingit.

Commented by mr W last updated on 24/Jun/19

thanks sir!  i didn′t expect that the solution for  quadrilateral is even easier than for  triangle. i mean without cubic equation.

thankssir!ididntexpectthatthesolutionforquadrilateraliseveneasierthanfortriangle.imeanwithoutcubicequation.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com