Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 62517 by Tawa1 last updated on 22/Jun/19

Commented by $@ty@m last updated on 22/Jun/19

what is meant by BC= ((3),(1) )   pl. clarify this notation.

$${what}\:{is}\:{meant}\:{by}\:{BC}=\begin{pmatrix}{\mathrm{3}}\\{\mathrm{1}}\end{pmatrix}\: \\ $$$${pl}.\:{clarify}\:{this}\:{notation}. \\ $$

Commented by Prithwish sen last updated on 22/Jun/19

I think it is   BC = 3i^�^�  +1j^�

$$\mathrm{I}\:\mathrm{think}\:\mathrm{it}\:\mathrm{is}\: \\ $$$$\mathrm{BC}\:=\:\mathrm{3}\hat {\boldsymbol{\mathrm{i}}}+\mathrm{1}\hat {\boldsymbol{\mathrm{j}}} \\ $$

Answered by tanmay last updated on 22/Jun/19

Two vectors P^→  and Q^→   are ∥ to each other if   only if P^→ =λQ^→   now here ..BC^→ =3i+j  DA^→ =−3i−j  so BC^→ =(−1)DA^→   hence BC^→ ∥ DA^→   again..  BC^→ =OC^→ −OB^→   CD^→ =OD^→ −OC^→   DA^→ =OA^→ −OD^→   Add them  BC^→ +CD^→ +DA^→ =OA^→ −OB^→   but look here OA^→ −OB^→ =BA^→   so BA^→ =(3i+j)+(−i−2j)+(−3i−j)  BA^→ =−i−2j      AB^→ =i+2j  now look  AB^→ =i+2j  and CD^→ =−i−2j  so AB^→ =(−1)×CD^→   hence AB^→ ∥  CD^→   so ABCD is ∥gm

$${Two}\:{vectors}\:\overset{\rightarrow} {{P}}\:{and}\:\overset{\rightarrow} {{Q}}\:\:{are}\:\parallel\:{to}\:{each}\:{other}\:{if}\: \\ $$$${only}\:{if}\:\overset{\rightarrow} {{P}}=\lambda\overset{\rightarrow} {{Q}} \\ $$$${now}\:{here}\:..{B}\overset{\rightarrow} {{C}}=\mathrm{3}{i}+{j}\:\:{D}\overset{\rightarrow} {{A}}=−\mathrm{3}{i}−{j} \\ $$$${so}\:{B}\overset{\rightarrow} {{C}}=\left(−\mathrm{1}\right){D}\overset{\rightarrow} {{A}}\:\:{hence}\:{B}\overset{\rightarrow} {{C}}\parallel\:{D}\overset{\rightarrow} {{A}} \\ $$$${again}.. \\ $$$${B}\overset{\rightarrow} {{C}}={O}\overset{\rightarrow} {{C}}−{O}\overset{\rightarrow} {{B}} \\ $$$${C}\overset{\rightarrow} {{D}}={O}\overset{\rightarrow} {{D}}−{O}\overset{\rightarrow} {{C}} \\ $$$${D}\overset{\rightarrow} {{A}}={O}\overset{\rightarrow} {{A}}−{O}\overset{\rightarrow} {{D}} \\ $$$${Add}\:{them} \\ $$$${B}\overset{\rightarrow} {{C}}+{C}\overset{\rightarrow} {{D}}+{D}\overset{\rightarrow} {{A}}={O}\overset{\rightarrow} {{A}}−{O}\overset{\rightarrow} {{B}} \\ $$$${but}\:{look}\:{here}\:{O}\overset{\rightarrow} {{A}}−{O}\overset{\rightarrow} {{B}}={B}\overset{\rightarrow} {{A}} \\ $$$${so}\:{B}\overset{\rightarrow} {{A}}=\left(\mathrm{3}{i}+{j}\right)+\left(−{i}−\mathrm{2}{j}\right)+\left(−\mathrm{3}{i}−{j}\right) \\ $$$${B}\overset{\rightarrow} {{A}}=−{i}−\mathrm{2}{j}\:\:\:\:\:\:{A}\overset{\rightarrow} {{B}}={i}+\mathrm{2}{j} \\ $$$${now}\:{look}\:\:{A}\overset{\rightarrow} {{B}}={i}+\mathrm{2}{j}\:\:{and}\:{C}\overset{\rightarrow} {{D}}=−{i}−\mathrm{2}{j} \\ $$$${so}\:{A}\overset{\rightarrow} {{B}}=\left(−\mathrm{1}\right)×{C}\overset{\rightarrow} {{D}} \\ $$$${hence}\:{A}\overset{\rightarrow} {{B}}\parallel\:\:{C}\overset{\rightarrow} {{D}} \\ $$$${so}\:{ABCD}\:{is}\:\parallel{gm} \\ $$$$ \\ $$

Commented by Tawa1 last updated on 22/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by $@ty@m last updated on 22/Jun/19

∵BC^→ =−DA^→   ⇒BC∥AD ...(i)  BA^→ =BC^→ +CD^→ +DA^→ = (((−1)),((−2)) )  ∴BA^→ =CD^→   ⇒BA∥CD ...(ii)  From (i) &(ii), we conclude that  ABCD is a parallelogram.

$$\because{B}\overset{\rightarrow} {{C}}=−{D}\overset{\rightarrow} {{A}} \\ $$$$\Rightarrow{BC}\parallel{AD}\:...\left({i}\right) \\ $$$${B}\overset{\rightarrow} {{A}}={B}\overset{\rightarrow} {{C}}+{C}\overset{\rightarrow} {{D}}+{D}\overset{\rightarrow} {{A}}=\begin{pmatrix}{−\mathrm{1}}\\{−\mathrm{2}}\end{pmatrix} \\ $$$$\therefore{B}\overset{\rightarrow} {{A}}={C}\overset{\rightarrow} {{D}} \\ $$$$\Rightarrow{BA}\parallel{CD}\:...\left({ii}\right) \\ $$$${From}\:\left({i}\right)\:\&\left({ii}\right),\:{we}\:{conclude}\:{that} \\ $$$${ABCD}\:{is}\:{a}\:{parallelogram}. \\ $$

Commented by Tawa1 last updated on 22/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by tanmay last updated on 22/Jun/19

QR^→ =OR^→ −OQ^→ =(2i+2j)−(i+6j)=i−4j  TS^→ =OS^→ −OT^→ =(5i+4j)−(xi+yj)=(5−x)i+(4−y)j  mid point of QS=(((1+5)/2),((6+4)/2))=(3,5)  mid point RT^→ =(((2+x)/2),((2+y)/2))  so ((2+x)/2)=((1+5)/2)→x=4     ((2+y)/2)=((6+4)/2)→y=8  (x,y)=(4,8)  TS^→ =(5−4)i+(4−8)j=i−4j

$${Q}\overset{\rightarrow} {{R}}={O}\overset{\rightarrow} {{R}}−{O}\overset{\rightarrow} {{Q}}=\left(\mathrm{2}{i}+\mathrm{2}{j}\right)−\left({i}+\mathrm{6}{j}\right)={i}−\mathrm{4}{j} \\ $$$${T}\overset{\rightarrow} {{S}}={O}\overset{\rightarrow} {{S}}−{O}\overset{\rightarrow} {{T}}=\left(\mathrm{5}{i}+\mathrm{4}{j}\right)−\left({xi}+{yj}\right)=\left(\mathrm{5}−{x}\right){i}+\left(\mathrm{4}−{y}\right){j} \\ $$$${mid}\:{point}\:{of}\:{QS}=\left(\frac{\mathrm{1}+\mathrm{5}}{\mathrm{2}},\frac{\mathrm{6}+\mathrm{4}}{\mathrm{2}}\right)=\left(\mathrm{3},\mathrm{5}\right) \\ $$$${mid}\:{point}\:{R}\overset{\rightarrow} {{T}}=\left(\frac{\mathrm{2}+{x}}{\mathrm{2}},\frac{\mathrm{2}+{y}}{\mathrm{2}}\right) \\ $$$${so}\:\frac{\mathrm{2}+{x}}{\mathrm{2}}=\frac{\mathrm{1}+\mathrm{5}}{\mathrm{2}}\rightarrow{x}=\mathrm{4}\:\:\:\:\:\frac{\mathrm{2}+{y}}{\mathrm{2}}=\frac{\mathrm{6}+\mathrm{4}}{\mathrm{2}}\rightarrow{y}=\mathrm{8} \\ $$$$\left({x},{y}\right)=\left(\mathrm{4},\mathrm{8}\right) \\ $$$${T}\overset{\rightarrow} {{S}}=\left(\mathrm{5}−\mathrm{4}\right){i}+\left(\mathrm{4}−\mathrm{8}\right){j}={i}−\mathrm{4}{j} \\ $$$$ \\ $$

Commented by Tawa1 last updated on 22/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by tanmay last updated on 22/Jun/19

RS^→ =(5−2)i+(4−2)j=3i+2j  ∣RS^→ ∣=(√(3^2 +2^2 )) =(√(13))   cosθ=(3/(√(13)))   sinθ=(2/(√(13)))  RS^→ =(√(13)) (icosθ+jsinθ)

$${R}\overset{\rightarrow} {{S}}=\left(\mathrm{5}−\mathrm{2}\right){i}+\left(\mathrm{4}−\mathrm{2}\right){j}=\mathrm{3}{i}+\mathrm{2}{j} \\ $$$$\mid{R}\overset{\rightarrow} {{S}}\mid=\sqrt{\mathrm{3}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }\:=\sqrt{\mathrm{13}}\: \\ $$$${cos}\theta=\frac{\mathrm{3}}{\sqrt{\mathrm{13}}}\:\:\:{sin}\theta=\frac{\mathrm{2}}{\sqrt{\mathrm{13}}} \\ $$$${R}\overset{\rightarrow} {{S}}=\sqrt{\mathrm{13}}\:\left({icos}\theta+{jsin}\theta\right) \\ $$

Commented by Tawa1 last updated on 22/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com