Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 62556 by naka3546 last updated on 22/Jun/19

((1+3)/3) + ((1+3+5)/3^2 ) + ((1+3+5+7)/3^3 ) + ...  =   (a/b)  ,  a, b ∈  Z^+

1+33+1+3+532+1+3+5+733+...=ab,a,bZ+

Commented by Prithwish sen last updated on 22/Jun/19

t_n =(1/3^n ) +((2n)/3^n ) + (n^2 /3^n )  t_1  = (1/3) + 2(1/3) + (1^2 /3)  t_2  = (1/3^2 ) +2(2/3^2 ) + (2^2 /3^2 )  ............................  S = ((1/3) + (1/3^2 ) + ...) +2((1/3)+(2/3^2 ) +.........) + ((1^2 /3) +(2^2 /3^2 ) +(3^2 /3^3 ) + ......)  =I_1 + I_2  +I_3   Now   I_1 =((1/3)/(1−(1/3)))= (1/2)  For I_2   (t_(n+1) /t_n ) = ((n+1)/(3n))→(1/3)<1 as n→∞  ∴I_2  converges  For I_3               (t_(n+1) /t_n ) = (1/3).(((n+1)^2 )/n^2 )= (1/3) .(1+(2/n)+(1/n^2 ) )→(1/3) as n→∞  thus I_3  also converges  ∴ the entire series is convergent   Is it ok ?  Waiting for your feedback.

tn=13n+2n3n+n23nt1=13+213+123t2=132+2232+2232............................S=(13+132+...)+2(13+232+.........)+(123+2232+3233+......)=I1+I2+I3NowI1=13113=12ForI2tn+1tn=n+13n13<1asnI2convergesForI3tn+1tn=13.(n+1)2n2=13.(1+2n+1n2)13asnthusI3alsoconvergestheentireseriesisconvergentIsitok?Waitingforyourfeedback.

Commented by mathmax by abdo last updated on 22/Jun/19

S =Σ_(n=1) ^∞   ((Σ_(k=0) ^n  (2k+1))/3^n )  let   the sequence u_k =2k+1 is srithmetic with u_0 =1  and r =2 ⇒ Σ_(k=0) ^n  u_k =u_0 +u_1 +...+u_n =((n+1)/2)(u_o  +u_n )=((n+1)/2)(1+2n+1)  =(n+1)^2  ⇒ S =Σ_(n=1) ^∞   (((n+1)^2 )/3^n ) =Σ_(n=2) ^∞  (n^2 /3^(n−1) ) =3 Σ_(n=2) ^∞  (n^2 /3^n )  Σ_(n=2) ^∞  (n^2 /3^n ) =Σ_(n=0) ^∞  (n^2 /3^n ) −(1/3)  let w(x) =Σ_(n=0) ^∞  x^n      with ∣x∣<1  we have   w^′ (x) =Σ_(n=1) ^∞  nx^(n−1)   ⇒xw^′ (x) =Σ_(n=1) ^∞  nx^n  ⇒w^′ (x)+x w^((2)) (x) =Σ_(n=1) ^∞ n^2  x^(n−1 )  ⇒  x{w^′ (x)+x w^((2)) (x)} =Σ_(n=1) ^∞  n^2  x^n    but w(x) =(1/(1−x)) ⇒w^′ (x) =(1/((1−x)^2 )) ⇒  w^((2)) (x) =−((2(−1)(1−x))/((1−x)^4 )) =(2/((1−x)^3 )) ⇒  Σ_(n=1) ^∞  n^2  x^n  =x{ (1/((1−x)^2 )) +((2x)/((1−x)^3 ))} =(x/((1−x)^2 )) +((2x^2 )/((1−x)^3 )) =((x(1−x)+2x^2 )/((1−x)^3 )) =((x^2  +x)/((1−x)^3 ))  and Σ_(n=1) ^∞  (n^2 /3^n ) =w((1/3)) =(((1/9)+(1/3))/(((2/3))^3 )) =(4/8) =(1/2) ⇒ S =3{(1/2)−(1/3)} =(3/2) − 1 =(1/2)

S=n=1k=0n(2k+1)3nletthesequenceuk=2k+1issrithmeticwithu0=1andr=2k=0nuk=u0+u1+...+un=n+12(uo+un)=n+12(1+2n+1)=(n+1)2S=n=1(n+1)23n=n=2n23n1=3n=2n23nn=2n23n=n=0n23n13letw(x)=n=0xnwithx∣<1wehavew(x)=n=1nxn1xw(x)=n=1nxnw(x)+xw(2)(x)=n=1n2xn1x{w(x)+xw(2)(x)}=n=1n2xnbutw(x)=11xw(x)=1(1x)2w(2)(x)=2(1)(1x)(1x)4=2(1x)3n=1n2xn=x{1(1x)2+2x(1x)3}=x(1x)2+2x2(1x)3=x(1x)+2x2(1x)3=x2+x(1x)3andn=1n23n=w(13)=19+13(23)3=48=12S=3{1213}=321=12

Answered by Smail last updated on 23/Jun/19

(a/b)=((1+3)/3)+((1+3+5)/3^2 )+...  Knowing that 1+3+5+7+...+2k−1=k^2   So,  (a/b)=(2^2 /3)+(3^2 /3^2 )+(4^2 /3^3 )+...  (a/b)=Σ_(n=2) ^∞ (n^2 /3^(n−1) )  Knowing that Σ_(n=0) ^∞ x^n =(1/(1−x)) with  ∣x∣<1  Σ_(n=0) ^∞ nx^n =(x/((1−x)^2 ))  Σ_(n=0) ^∞ n^2 x^(n−1) =(((1−x)+2x)/((1−x)^3 ))=((1+x)/((1−x)^3 ))  Σ_(n=2) ^∞ n^2 x^(n−1) +1=((1+x)/((1−x)^3 ))  Σ_(n=2) ^∞ n^2 x^(n−1) =((1+x)/((1−x)^3 ))−1  For x=(1/3)  (a/b)=Σ_(n=2) ^∞ (n^2 /3^(n−1) )=((1+(1/3))/((1−(1/3))^3 ))−1=(7/2)  Thus, a=7 and b=2

ab=1+33+1+3+532+...Knowingthat1+3+5+7+...+2k1=k2So,ab=223+3232+4233+...ab=n=2n23n1Knowingthatn=0xn=11xwithx∣<1n=0nxn=x(1x)2n=0n2xn1=(1x)+2x(1x)3=1+x(1x)3n=2n2xn1+1=1+x(1x)3n=2n2xn1=1+x(1x)31Forx=13ab=n=2n23n1=1+13(113)31=72Thus,a=7andb=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com