All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 62556 by naka3546 last updated on 22/Jun/19
1+33+1+3+532+1+3+5+733+...=ab,a,b∈Z+
Commented by Prithwish sen last updated on 22/Jun/19
tn=13n+2n3n+n23nt1=13+213+123t2=132+2232+2232............................S=(13+132+...)+2(13+232+.........)+(123+2232+3233+......)=I1+I2+I3NowI1=131−13=12ForI2tn+1tn=n+13n→13<1asn→∞∴I2convergesForI3tn+1tn=13.(n+1)2n2=13.(1+2n+1n2)→13asn→∞thusI3alsoconverges∴theentireseriesisconvergentIsitok?Waitingforyourfeedback.
Commented by mathmax by abdo last updated on 22/Jun/19
S=∑n=1∞∑k=0n(2k+1)3nletthesequenceuk=2k+1issrithmeticwithu0=1andr=2⇒∑k=0nuk=u0+u1+...+un=n+12(uo+un)=n+12(1+2n+1)=(n+1)2⇒S=∑n=1∞(n+1)23n=∑n=2∞n23n−1=3∑n=2∞n23n∑n=2∞n23n=∑n=0∞n23n−13letw(x)=∑n=0∞xnwith∣x∣<1wehavew′(x)=∑n=1∞nxn−1⇒xw′(x)=∑n=1∞nxn⇒w′(x)+xw(2)(x)=∑n=1∞n2xn−1⇒x{w′(x)+xw(2)(x)}=∑n=1∞n2xnbutw(x)=11−x⇒w′(x)=1(1−x)2⇒w(2)(x)=−2(−1)(1−x)(1−x)4=2(1−x)3⇒∑n=1∞n2xn=x{1(1−x)2+2x(1−x)3}=x(1−x)2+2x2(1−x)3=x(1−x)+2x2(1−x)3=x2+x(1−x)3and∑n=1∞n23n=w(13)=19+13(23)3=48=12⇒S=3{12−13}=32−1=12
Answered by Smail last updated on 23/Jun/19
ab=1+33+1+3+532+...Knowingthat1+3+5+7+...+2k−1=k2So,ab=223+3232+4233+...ab=∑∞n=2n23n−1Knowingthat∑∞n=0xn=11−xwith∣x∣<1∑∞n=0nxn=x(1−x)2∑∞n=0n2xn−1=(1−x)+2x(1−x)3=1+x(1−x)3∑∞n=2n2xn−1+1=1+x(1−x)3∑∞n=2n2xn−1=1+x(1−x)3−1Forx=13ab=∑∞n=2n23n−1=1+13(1−13)3−1=72Thus,a=7andb=2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com