Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 6257 by 314159 last updated on 20/Jun/16

Given that a and b are positive real number  such that b<4a+1,show that ((2a+b)/(4a+1))<(√(4a^2 +b)) .

Giventhataandbarepositiverealnumber suchthatb<4a+1,showthat2a+b4a+1<4a2+b.

Answered by Yozzii last updated on 20/Jun/16

((2a+b)/(4a+1))<(√(4a^2 +b))      a,b>0  ⇒(((2a+b)^2 )/((4a+1)^2 ))<4a^2 +b  −−−−−−−−−−−−−−−−−−−−−−−−−−−  Let φ=(((2a+b)^2 )/((4a+1)^2 ))−4a^2 −b.  φ=((4a^2 +4ab+b^2 −(16a^2 +8a+1)(4a^2 +b))/((4a+1)^2 ))  φ=((4a^2 +4ab+b^2 −64a^4 −16a^2 b−32a^3 −8ab−4a^2 −b)/((4a+1)^2 ))  φ=((−64a^4 −16a^2 b−32a^3 −4ab+b(b−1))/((4a+1)^2 ))  Since b<4a+1⇒b−1<4a⇒b(b−1)<4ab  ⇒φ<((−64a^4 −16a^2 b−32a^3 −4ab+4ab)/((4a+1)^2 ))  φ<((−16a^2 (4a^2 +b+2a))/((4a+1)^2 ))  Since a,b>0⇒ 4a^2 +2a+b>0, −16a^2 <0  and (4a+1)^2 >0. Thus, φ<0.  ⇒0<(((2a+b)^2 )/((4a+1)^2 ))<4a^2 +b  ∴ (√((((2a+b)/(4a+1)))^2 ))<(√(4a^2 +b))  ⇒∣((2a+b)/(4a+1))∣<(√(4a^2 +b))  a,b>0⇒ 2a+b>0 and 4a+1>0.  ∴ ((2a+b)/(4a+1))<(√(4a^2 +b)).

2a+b4a+1<4a2+ba,b>0 (2a+b)2(4a+1)2<4a2+b Letϕ=(2a+b)2(4a+1)24a2b. ϕ=4a2+4ab+b2(16a2+8a+1)(4a2+b)(4a+1)2 ϕ=4a2+4ab+b264a416a2b32a38ab4a2b(4a+1)2 ϕ=64a416a2b32a34ab+b(b1)(4a+1)2 Sinceb<4a+1b1<4ab(b1)<4ab ϕ<64a416a2b32a34ab+4ab(4a+1)2 ϕ<16a2(4a2+b+2a)(4a+1)2 Sincea,b>04a2+2a+b>0,16a2<0 and(4a+1)2>0.Thus,ϕ<0. 0<(2a+b)2(4a+1)2<4a2+b (2a+b4a+1)2<4a2+b ⇒∣2a+b4a+1∣<4a2+b a,b>02a+b>0and4a+1>0. 2a+b4a+1<4a2+b.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com