All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 6257 by 314159 last updated on 20/Jun/16
Giventhataandbarepositiverealnumber suchthatb<4a+1,showthat2a+b4a+1<4a2+b.
Answered by Yozzii last updated on 20/Jun/16
2a+b4a+1<4a2+ba,b>0 ⇒(2a+b)2(4a+1)2<4a2+b −−−−−−−−−−−−−−−−−−−−−−−−−−− Letϕ=(2a+b)2(4a+1)2−4a2−b. ϕ=4a2+4ab+b2−(16a2+8a+1)(4a2+b)(4a+1)2 ϕ=4a2+4ab+b2−64a4−16a2b−32a3−8ab−4a2−b(4a+1)2 ϕ=−64a4−16a2b−32a3−4ab+b(b−1)(4a+1)2 Sinceb<4a+1⇒b−1<4a⇒b(b−1)<4ab ⇒ϕ<−64a4−16a2b−32a3−4ab+4ab(4a+1)2 ϕ<−16a2(4a2+b+2a)(4a+1)2 Sincea,b>0⇒4a2+2a+b>0,−16a2<0 and(4a+1)2>0.Thus,ϕ<0. ⇒0<(2a+b)2(4a+1)2<4a2+b ∴(2a+b4a+1)2<4a2+b ⇒∣2a+b4a+1∣<4a2+b a,b>0⇒2a+b>0and4a+1>0. ∴2a+b4a+1<4a2+b.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com