All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 62570 by aliesam last updated on 23/Jun/19
Commented by mathmax by abdo last updated on 23/Jun/19
wehaveS(x)=∑n=1∞sin(nx)2n−1=2∑n=1∞sin(nx)2n=2Im(∑n=1∞einx2n)∑n=1∞einx2n=∑n=1∞(eix2)n=∑n=0∞(eix2)n−1=11−eix2−1(∣eix2∣=12<1)=22−eix−1=22−cosx−isinx−1=2(2−cosx+isinx)(2−cosx)2+sin2x−1=2(2−cosx)−{(2−cosx)2+sin2x}+2isinx(2−cosx)2+sin2x⇒S(x)=4sinx(2−cosx)2+sin2x=4sinx4−4cosx+1=4sinx5−4cosxx=π4⇒S(π4)=4sin(π4)5−4cos(π4)=425−42=452−4.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com