Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 62571 by Joel122 last updated on 23/Jun/19

Find  lim_(n→∞)  (n((1/((2n+1)^2 )) + (1/((2n+3)^2 )) + ... + (1/((4n−1)^2 ))))

$$\mathrm{Find} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({n}\left(\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{2}} }\:+\:...\:+\:\frac{\mathrm{1}}{\left(\mathrm{4}{n}−\mathrm{1}\right)^{\mathrm{2}} }\right)\right) \\ $$

Commented by Prithwish sen last updated on 23/Jun/19

lim_(n→∞) (1/n) [(l/((2+(1/n))^2 ))+(1/((2+(3/n))^2 )) +....+(1/((2+((2n−1)/n))^2 ))]  = lim_(n→∞) (1/n)Σ_(r=1) ^n (1/((2+((2r−1)/n))^2 ))  Putn=(1/h) n→∞ ⇒h→0   = lim_(h→0) h Σ_(r=1) ^n (1/((2+2rh)^2 ))  =∫_0 ^1  (dx/((2+2x)^2 ))    ∵nh=1=1−0  = (1/4)[−(1/((1+x)))]_0 ^1   =(1/4)[−(1/2)+1]  =(1/8)

$$\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\frac{\mathrm{1}}{\mathrm{n}}\:\left[\frac{\mathrm{l}}{\left(\mathrm{2}+\frac{\mathrm{1}}{\mathrm{n}}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{2}+\frac{\mathrm{3}}{\mathrm{n}}\right)^{\mathrm{2}} }\:+....+\frac{\mathrm{1}}{\left(\mathrm{2}+\frac{\mathrm{2n}−\mathrm{1}}{\mathrm{n}}\right)^{\mathrm{2}} }\right] \\ $$$$=\:\mathrm{lim}_{\mathrm{n}\rightarrow\infty} \frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{r}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}+\frac{\mathrm{2r}−\mathrm{1}}{\mathrm{n}}\right)^{\mathrm{2}} } \\ $$$$\mathrm{Putn}=\frac{\mathrm{1}}{\mathrm{h}}\:\mathrm{n}\rightarrow\infty\:\Rightarrow\mathrm{h}\rightarrow\mathrm{0}\: \\ $$$$=\:\mathrm{lim}_{\mathrm{h}\rightarrow\mathrm{0}} \mathrm{h}\:\underset{\mathrm{r}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}+\mathrm{2rh}\right)^{\mathrm{2}} } \\ $$$$=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{dx}}{\left(\mathrm{2}+\mathrm{2x}\right)^{\mathrm{2}} }\:\:\:\:\because\mathrm{nh}=\mathrm{1}=\mathrm{1}−\mathrm{0} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\left[−\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{x}\right)}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}} \\ $$

Commented by Joel122 last updated on 23/Jun/19

The answer is (1/8)

$$\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$

Commented by Tony Lin last updated on 23/Jun/19

=lim_(n→∞) ((1/2)×(2/n)((1/((2+(1/n))^2 ))+(1/((2+(3/n))^2 ))+...+(1/((4−(1/n))^2 ))))  =(1/2)∫_2 ^4 (1/x^2 )dx  =(1/2)[−(1/x)]_2 ^4   =−(1/8)+(1/4)  =(1/8)

$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}}{{n}}\left(\frac{\mathrm{1}}{\left(\mathrm{2}+\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{2}+\frac{\mathrm{3}}{{n}}\right)^{\mathrm{2}} }+...+\frac{\mathrm{1}}{\left(\mathrm{4}−\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} }\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{2}} ^{\mathrm{4}} \frac{\mathrm{1}}{{x}^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[−\frac{\mathrm{1}}{{x}}\right]_{\mathrm{2}} ^{\mathrm{4}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}} \\ $$

Commented by JDamian last updated on 23/Jun/19

Please, would you mind to explain how the sum  of a discrete sucession turns into an integral  in ℜ?

$${Please},\:{would}\:{you}\:{mind}\:{to}\:{explain}\:{how}\:{the}\:{sum} \\ $$$${of}\:{a}\:{discrete}\:{sucession}\:{turns}\:{into}\:{an}\:{integral} \\ $$$${in}\:\Re? \\ $$

Commented by Tony Lin last updated on 23/Jun/19

The definite integral of a continuous  function f(x) over the interval[a , b]  ,denoted by ∫_a ^b f(x)dx, is the limit of   Riemann sum as the number of  subdivisions approaches infinity  i.e ∫_a ^b f(x)dx=lim_(n→∞) Σ_(k=1) ^n △xf(x_k )  where △x=((b−a)/n) and x_k =a+k△x  now we have △x=(2/n) , means the  constant width of the rectangle,  and x_k  is the x value of the right   edge of the k^(th)  rectangle,from  x_1 =2+(1/n) to x_n = 4−(1/n) ,then f(x_k )  will give us the height of  each  rectangle ,and here f(x)=(1/x^2 ) , so the  area of the k^(th)  rectangle is  (2/n)×(1/((2+(2/n)k)^2 )) , and we sum that for  values of k from 1 to n  R(n)=lim_(n→∞) Σ_(k=1) ^n (1/((2+(2/n)k)^2 ))×(2/n)  now we can represent the actual  area as a limit:  ∫_(2 ) ^4 (1/x^2 )dx=lim_(n→∞) Σ_(k=1) ^n (1/((2+(2/n)k)^2 ))×(2/n)=(1/4)  but now it gives (1/n) not (2/n) ,  so it needs to be multiplied by (1/2)

$${The}\:{definite}\:{integral}\:{of}\:{a}\:{continuous} \\ $$$${function}\:{f}\left({x}\right)\:{over}\:{the}\:{interval}\left[{a}\:,\:{b}\right] \\ $$$$,{denoted}\:{by}\:\int_{{a}} ^{{b}} {f}\left({x}\right){dx},\:{is}\:{the}\:{limit}\:{of}\: \\ $$$${Riemann}\:{sum}\:{as}\:{the}\:{number}\:{of} \\ $$$${subdivisions}\:{approaches}\:{infinity} \\ $$$${i}.{e}\:\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\bigtriangleup{xf}\left({x}_{{k}} \right) \\ $$$${where}\:\bigtriangleup{x}=\frac{{b}−{a}}{{n}}\:{and}\:{x}_{{k}} ={a}+{k}\bigtriangleup{x} \\ $$$${now}\:{we}\:{have}\:\bigtriangleup{x}=\frac{\mathrm{2}}{{n}}\:,\:{means}\:{the} \\ $$$${constant}\:{width}\:{of}\:{the}\:{rectangle}, \\ $$$${and}\:{x}_{{k}} \:{is}\:{the}\:{x}\:{value}\:{of}\:{the}\:{right}\: \\ $$$${edge}\:{of}\:{the}\:{k}^{{th}} \:{rectangle},{from} \\ $$$${x}_{\mathrm{1}} =\mathrm{2}+\frac{\mathrm{1}}{{n}}\:{to}\:{x}_{{n}} =\:\mathrm{4}−\frac{\mathrm{1}}{{n}}\:,{then}\:{f}\left({x}_{{k}} \right) \\ $$$${will}\:{give}\:{us}\:{the}\:{height}\:{of}\:\:{each} \\ $$$${rectangle}\:,{and}\:{here}\:{f}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:,\:{so}\:{the} \\ $$$${area}\:{of}\:{the}\:{k}^{{th}} \:{rectangle}\:{is} \\ $$$$\frac{\mathrm{2}}{{n}}×\frac{\mathrm{1}}{\left(\mathrm{2}+\frac{\mathrm{2}}{{n}}{k}\right)^{\mathrm{2}} }\:,\:{and}\:{we}\:{sum}\:{that}\:{for} \\ $$$${values}\:{of}\:{k}\:{from}\:\mathrm{1}\:{to}\:{n} \\ $$$${R}\left({n}\right)=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}+\frac{\mathrm{2}}{{n}}{k}\right)^{\mathrm{2}} }×\frac{\mathrm{2}}{{n}} \\ $$$${now}\:{we}\:{can}\:{represent}\:{the}\:{actual} \\ $$$${area}\:{as}\:{a}\:{limit}: \\ $$$$\int_{\mathrm{2}\:} ^{\mathrm{4}} \frac{\mathrm{1}}{{x}^{\mathrm{2}} }{dx}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}+\frac{\mathrm{2}}{{n}}{k}\right)^{\mathrm{2}} }×\frac{\mathrm{2}}{{n}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${but}\:{now}\:{it}\:{gives}\:\frac{\mathrm{1}}{{n}}\:{not}\:\frac{\mathrm{2}}{{n}}\:, \\ $$$${so}\:{it}\:{needs}\:{to}\:{be}\:{multiplied}\:{by}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by Joel122 last updated on 24/Jun/19

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com