Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 62626 by Tawa1 last updated on 23/Jun/19

Find the limit of     ((n!)/4^n )   as  n  approach infinity

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{of}\:\:\:\:\:\frac{\mathrm{n}!}{\mathrm{4}^{\mathrm{n}} }\:\:\:\mathrm{as}\:\:\mathrm{n}\:\:\mathrm{approach}\:\mathrm{infinity} \\ $$

Commented by mathmax by abdo last updated on 23/Jun/19

let u_n =((n!)/4^n )    we have n! ∼n^n  e^(−n) (√(2πn))( stirling formulae) ⇒  ((n!)/4^n ) ∼ ((n/4))^n  e^(−n) (√(2πn)) = e^(nln((n/4))−n) (√(2πn))  =e^(n{ln((n/4))−1}) (√(2πn)) →+∞ (n→+∞) ⇒  lim_(n→∞) u_n =+∞ .

$${let}\:{u}_{{n}} =\frac{{n}!}{\mathrm{4}^{{n}} }\:\:\:\:{we}\:{have}\:{n}!\:\sim{n}^{{n}} \:{e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}\left(\:{stirling}\:{formulae}\right)\:\Rightarrow \\ $$$$\frac{{n}!}{\mathrm{4}^{{n}} }\:\sim\:\left(\frac{{n}}{\mathrm{4}}\right)^{{n}} \:{e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}\:=\:{e}^{{nln}\left(\frac{{n}}{\mathrm{4}}\right)−{n}} \sqrt{\mathrm{2}\pi{n}}\:\:={e}^{{n}\left\{{ln}\left(\frac{{n}}{\mathrm{4}}\right)−\mathrm{1}\right\}} \sqrt{\mathrm{2}\pi{n}}\:\rightarrow+\infty\:\left({n}\rightarrow+\infty\right)\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow\infty} {u}_{{n}} =+\infty\:. \\ $$

Commented by mathmax by abdo last updated on 23/Jun/19

another way let u_n =((n!)/4^n ) ⇒(u_(n+1) /u_n ) =(((n+1)!)/4^(n+1) ) .(4^n /(n!)) =((n+1)/4)   (u_n >0 ∀n) ⇒  ln(u_(n+1) )−ln(u_n ) =ln(n+1)−2ln(2) ⇒  Σ_(k=0) ^(n−1)  (ln(u_(k+1) )−ln(u_k ))=nln(n+1)−2nln(2) ⇒  ln(u_n ) =n{ ln(n+1)−2ln(2)} →+∞ ⇒ln(u_n )→+∞ ⇒lim_(n→∞) u_n =+∞ .

$${another}\:{way}\:{let}\:{u}_{{n}} =\frac{{n}!}{\mathrm{4}^{{n}} }\:\Rightarrow\frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }\:=\frac{\left({n}+\mathrm{1}\right)!}{\mathrm{4}^{{n}+\mathrm{1}} }\:.\frac{\mathrm{4}^{{n}} }{{n}!}\:=\frac{{n}+\mathrm{1}}{\mathrm{4}}\:\:\:\left({u}_{{n}} >\mathrm{0}\:\forall{n}\right)\:\Rightarrow \\ $$$${ln}\left({u}_{{n}+\mathrm{1}} \right)−{ln}\left({u}_{{n}} \right)\:={ln}\left({n}+\mathrm{1}\right)−\mathrm{2}{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left({ln}\left({u}_{{k}+\mathrm{1}} \right)−{ln}\left({u}_{{k}} \right)\right)={nln}\left({n}+\mathrm{1}\right)−\mathrm{2}{nln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$${ln}\left({u}_{{n}} \right)\:={n}\left\{\:{ln}\left({n}+\mathrm{1}\right)−\mathrm{2}{ln}\left(\mathrm{2}\right)\right\}\:\rightarrow+\infty\:\Rightarrow{ln}\left({u}_{{n}} \right)\rightarrow+\infty\:\Rightarrow{lim}_{{n}\rightarrow\infty} {u}_{{n}} =+\infty\:. \\ $$

Commented by Tawa1 last updated on 23/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mathmax by abdo last updated on 23/Jun/19

you are most welcome.

$${you}\:{are}\:{most}\:{welcome}. \\ $$

Answered by MJS last updated on 23/Jun/19

((n!)/4^n )=((4!)/4^4 )×(5/4)×(6/4)×(7/4)×...×(n/4)  ⇒ lim_(n→∞) ((n!)/4^n )=+∞

$$\frac{{n}!}{\mathrm{4}^{{n}} }=\frac{\mathrm{4}!}{\mathrm{4}^{\mathrm{4}} }×\frac{\mathrm{5}}{\mathrm{4}}×\frac{\mathrm{6}}{\mathrm{4}}×\frac{\mathrm{7}}{\mathrm{4}}×...×\frac{{n}}{\mathrm{4}} \\ $$$$\Rightarrow\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{n}!}{\mathrm{4}^{{n}} }=+\infty \\ $$

Commented by Tawa1 last updated on 23/Jun/19

Sir, is the answer not zero ???.  Just asking sir

$$\mathrm{Sir},\:\mathrm{is}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{not}\:\mathrm{zero}\:???.\:\:\mathrm{Just}\:\mathrm{asking}\:\mathrm{sir} \\ $$

Commented by Tawa1 last updated on 23/Jun/19

Why do you start from  n = 4  sir, and not  n = 1

$$\mathrm{Why}\:\mathrm{do}\:\mathrm{you}\:\mathrm{start}\:\mathrm{from}\:\:\mathrm{n}\:=\:\mathrm{4}\:\:\mathrm{sir},\:\mathrm{and}\:\mathrm{not}\:\:\mathrm{n}\:=\:\mathrm{1} \\ $$

Commented by MJS last updated on 23/Jun/19

((5!)/4^5 )=((15)/(128))  ((6!)/4^6 )=((45)/(256))  ((7!)/4^7 )=((315)/(1024))  ((8!)/4^8 )=((315)/(512))  ((9!)/4^9 )=((2835)/(2048))  ((10!)/4^(10) )=((14175)/(4096))  ...  ((100!)/4^(100) )≈5.8×10^(97)

$$\frac{\mathrm{5}!}{\mathrm{4}^{\mathrm{5}} }=\frac{\mathrm{15}}{\mathrm{128}} \\ $$$$\frac{\mathrm{6}!}{\mathrm{4}^{\mathrm{6}} }=\frac{\mathrm{45}}{\mathrm{256}} \\ $$$$\frac{\mathrm{7}!}{\mathrm{4}^{\mathrm{7}} }=\frac{\mathrm{315}}{\mathrm{1024}} \\ $$$$\frac{\mathrm{8}!}{\mathrm{4}^{\mathrm{8}} }=\frac{\mathrm{315}}{\mathrm{512}} \\ $$$$\frac{\mathrm{9}!}{\mathrm{4}^{\mathrm{9}} }=\frac{\mathrm{2835}}{\mathrm{2048}} \\ $$$$\frac{\mathrm{10}!}{\mathrm{4}^{\mathrm{10}} }=\frac{\mathrm{14175}}{\mathrm{4096}} \\ $$$$... \\ $$$$\frac{\mathrm{100}!}{\mathrm{4}^{\mathrm{100}} }\approx\mathrm{5}.\mathrm{8}×\mathrm{10}^{\mathrm{97}} \\ $$

Commented by MJS last updated on 23/Jun/19

I showed that from (5/4) on we′re multiplicating  by terms >1

$$\mathrm{I}\:\mathrm{showed}\:\mathrm{that}\:\mathrm{from}\:\frac{\mathrm{5}}{\mathrm{4}}\:\mathrm{on}\:\mathrm{we}'\mathrm{re}\:\mathrm{multiplicating} \\ $$$$\mathrm{by}\:\mathrm{terms}\:>\mathrm{1} \\ $$

Commented by Tawa1 last updated on 23/Jun/19

God bless you sir.  Infinity is answer

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\:\mathrm{Infinity}\:\mathrm{is}\:\mathrm{answer} \\ $$

Commented by MJS last updated on 23/Jun/19

you′re welcome  maybe you had ((n!)/n^n ) in mind?

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome} \\ $$$$\mathrm{maybe}\:\mathrm{you}\:\mathrm{had}\:\frac{{n}!}{{n}^{{n}} }\:\mathrm{in}\:\mathrm{mind}? \\ $$

Commented by Tawa1 last updated on 23/Jun/19

I appreciate. now i know:      lim_(∞→0)   ((n!)/4^n )  =  + ∞

$$\mathrm{I}\:\mathrm{appreciate}.\:\mathrm{now}\:\mathrm{i}\:\mathrm{know}:\:\:\:\:\:\:\underset{\infty\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{n}!}{\mathrm{4}^{\mathrm{n}} }\:\:=\:\:+\:\infty \\ $$

Commented by Tawa1 last updated on 23/Jun/19

The answer is this is zero sir ?

$$\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{this}\:\mathrm{is}\:\mathrm{zero}\:\mathrm{sir}\:? \\ $$

Commented by Tawa1 last updated on 23/Jun/19

lim_(n→∞)  ((n!)/n^n )  =  0

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{n}!}{\mathrm{n}^{\mathrm{n}} }\:\:=\:\:\mathrm{0} \\ $$

Commented by MJS last updated on 23/Jun/19

yes

$${yes} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com