All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 62657 by mathmax by abdo last updated on 24/Jun/19
calculatelimx→0ln(1+tan(2x))−ln(cos(3x))x3
Commented by mathmax by abdo last updated on 24/Jun/19
letusehospitalteoremwithu(x)=ln(1+tan(2x))−ln(cos(3x))andv(x)=x3wehaveu′(x)=2(1+tan2(2x))1+tan(2x)+3sin(3x)cos(3x)=2(1+tan(2x))2−2tan(2x)1+tan(2x)+3tan(3x)=2(1+tan(2x))−4tan(2x)+1−11+tan(2x)+3tan(3x)=2(1+tan(2x))−4+41+tan(2x)+3tan(3x)=−2+2tan(2x)+3tan(3x)+41+tan(2x)⇒u(2)(x)=4(1+tan2(2x))+9(1+tan2(3x))+4−2(1+tan2(2x))(1+tan(2x))2⇒u(3)(x)=4{4tan(2x)(1+tan2(2x))}+9{6tan(3x)(1+tan2(3x)}−84tan(2x)(1+tan2(2x)(1+tan(2x))2−(1+tan2(2x))2(1+tan(2x))2(1+tan2(2x))(1+tan(2x))4⇒limx→0u(3)(x)=−8−41=32alsowehavev′(x)=3x2⇒v(2)(x)=6x⇒v(3)(x)=6⇒limx→0ln(1+tan(2x))−ln(cos(3x))x3=326=163.
Commented by MJS last updated on 24/Jun/19
Idon′tthinkwecanusel′Hopitalasecondtimebecauseu′(0)=2
Answered by MJS last updated on 24/Jun/19
limx→0ln(1+tan2x)−lncos3xx3==limx→0ddx[ln(1+tan2x)−lncos3x]ddx[x3]==limx→041+cos4x+sin4x+3tan3x3x2=20⇒undefined
Terms of Service
Privacy Policy
Contact: info@tinkutara.com