Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 62657 by mathmax by abdo last updated on 24/Jun/19

calculate lim_(x→0)      ((ln(1+tan(2x))−ln(cos(3x)))/x^3 )

calculatelimx0ln(1+tan(2x))ln(cos(3x))x3

Commented by mathmax by abdo last updated on 24/Jun/19

let use hospital teorem  with u(x)=ln(1+tan(2x))−ln(cos(3x))  and v(x) =x^3    we have   u^′ (x) =((2(1+tan^2 (2x)))/(1+tan(2x)))+ ((3sin(3x))/(cos(3x)))  =2  (((1+tan(2x))^2 −2tan(2x))/(1+tan(2x))) +3 tan(3x)  =2(1+tan(2x))−4 ((tan(2x)+1−1)/(1+tan(2x))) +3tan(3x)  =2(1+tan(2x))−4 +(4/(1+tan(2x))) +3 tan(3x)  =−2 +2tan(2x) +3tan(3x)+(4/(1+tan(2x))) ⇒  u^((2)) (x) =4(1+tan^2 (2x)) +9(1+tan^2 (3x))+4((−2(1+tan^2 (2x)))/((1+tan(2x))^2 )) ⇒  u^((3)) (x) =4{4tan(2x)(1+tan^2 (2x))}+ 9{ 6tan(3x)(1+tan^2 (3x)}  −8((4tan(2x)(1+tan^2 (2x)(1+tan(2x))^2 −(1+tan^2 (2x))2(1+tan(2x))2(1+tan^2 (2x)))/((1+tan(2x))^4 ))  ⇒lim_(x→0) u^((3)) (x) =−8 ((−4)/1) =32   also we have v^′ (x)=3x^2  ⇒v^((2)) (x)=6x ⇒v^((3)) (x)=6  ⇒lim_(x→0)    ((ln(1+tan(2x))−ln(cos(3x)))/x^3 ) =((32)/6) =((16)/3) .

letusehospitalteoremwithu(x)=ln(1+tan(2x))ln(cos(3x))andv(x)=x3wehaveu(x)=2(1+tan2(2x))1+tan(2x)+3sin(3x)cos(3x)=2(1+tan(2x))22tan(2x)1+tan(2x)+3tan(3x)=2(1+tan(2x))4tan(2x)+111+tan(2x)+3tan(3x)=2(1+tan(2x))4+41+tan(2x)+3tan(3x)=2+2tan(2x)+3tan(3x)+41+tan(2x)u(2)(x)=4(1+tan2(2x))+9(1+tan2(3x))+42(1+tan2(2x))(1+tan(2x))2u(3)(x)=4{4tan(2x)(1+tan2(2x))}+9{6tan(3x)(1+tan2(3x)}84tan(2x)(1+tan2(2x)(1+tan(2x))2(1+tan2(2x))2(1+tan(2x))2(1+tan2(2x))(1+tan(2x))4limx0u(3)(x)=841=32alsowehavev(x)=3x2v(2)(x)=6xv(3)(x)=6limx0ln(1+tan(2x))ln(cos(3x))x3=326=163.

Commented by MJS last updated on 24/Jun/19

I don′t think we can use l′Hopital a second  time because u′(0)=2

IdontthinkwecanuselHopitalasecondtimebecauseu(0)=2

Answered by MJS last updated on 24/Jun/19

lim_(x→0) ((ln (1+tan 2x) −ln cos 3x)/x^3 )=  =lim_(x→0) (((d/dx)[ln (1+tan 2x) −ln cos 3x])/((d/dx)[x^3 ]))=  =lim_(x→0) (((4/(1+cos 4x +sin 4x))+3tan 3x)/(3x^(2 ) ))=(2/0) ⇒ undefined

limx0ln(1+tan2x)lncos3xx3==limx0ddx[ln(1+tan2x)lncos3x]ddx[x3]==limx041+cos4x+sin4x+3tan3x3x2=20undefined

Terms of Service

Privacy Policy

Contact: info@tinkutara.com