Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 62669 by Sayantan chakraborty last updated on 24/Jun/19

calculate the value of Σ_(n=0) ^(1947) (1/(2^n +(√2^(1947) )))

calculatethevalueof1947n=012n+21947

Answered by tanmay last updated on 24/Jun/19

a=(√2^(1947) )   S=(1/(2^0 +a))+(1/(2^1 +a))+(1/(2^2 +a))+(1/(2^3 +a))+...+(1/(2^(1947) +a))  ((2+a)/2)≥(2×a)^(1/2)   2+a≥2×(2a)^(1/2)   (1/(2+a))≤(1/(2×(2a)^(1/2) ))  (1/(2+a))≤(1/(2(√a) ×(2)^(1/2) ))  S≤(1/(2(√a)))[(1/((2^0 )^(1/2) ))+(1/((2^1 )^(1/2) ))+(1/((2^2 )^(1/2) ))+...+(1/((2^(1947) )^(1/2) ))]  S≤(1/(2(√a)))[(1/(((√(2 )) )^0 ))+(1/(((√2) )^1 ))+(1/(((√2) )^2 ))+...+(1/(((√2) )^(1947) ))]  S≤(1/(2(√a)))×(((1/(((√2) )^0 )){1−((1/((√2) )))^(1948) })/(1−((1/(√2))))) [using ((A(1−r^n ))/(1−r))]  S≤(1/(2(√a)))×(((√2)×(1−(1/2^(974) )))/((√2) −1))  S≤(1/((2−(√2) ))) ×((1−(1/2^(974) ))/(((√2^(1947) )  )^(1/2) ))≈(1/((2−(√2) )))×(1/(((√2^(1947) ) )^(1/2) ))  i have found approximate value not  exact value so please cheack

a=21947S=120+a+121+a+122+a+123+a+...+121947+a2+a2(2×a)122+a2×(2a)1212+a12×(2a)1212+a12a×(2)12S12a[1(20)12+1(21)12+1(22)12+...+1(21947)12]S12a[1(2)0+1(2)1+1(2)2+...+1(2)1947]S12a×1(2)0{1(12)1948}1(12)[usingA(1rn)1r]S12a×2×(112974)21S1(22)×112974(21947)121(22)×1(21947)12ihavefoundapproximatevaluenotexactvaluesopleasecheack

Commented by Sayantan chakraborty last updated on 25/Jun/19

answer is ((487)/((√)2^(1945) )).

answeris48721945.

Answered by ajfour last updated on 30/Jun/19

S=Σ_(n=0) ^(2N)  (1/(2^n +2^N ))     (where 2N=1947)     =(1/2^N ) (Σ_(n=0) ^(2N)  (1/(1+2^(n−N) )))  2^N S=(2^N /(2^N +1))+(2^N /(2^N +2))+(2^N /(2^N +2^2 ))+...    ......+(2/(2+1))+(1/(1+1))+(1/(1+2))+(1/(1+2^2 ))+..       .....+(2^2 /(2^2 +2^N +))(2/(2+2^N ))+(1/(1+2^N ))+....  ⇒    2^N S=(1/2)+N   S = ((2N+1)/(2(√2^(2N) )))    ⇒  S=  ((1948)/(2((√)2^(1947) ))) =((487)/((√)2^(1945) )) .

S=2Nn=012n+2N(where2N=1947)=12N(2Nn=011+2nN)2NS=2N2N+1+2N2N+2+2N2N+22+.........+22+1+11+1+11+2+11+22+.......+2222+2N+22+2N+11+2N+....2NS=12+NS=2N+1222NS=19482(21947)=48721945.

Commented by Sayantan chakraborty last updated on 30/Jun/19

Yes it is correct solution.

Yesitiscorrectsolution.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com