Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 6267 by sanusihammed last updated on 21/Jun/16

Verify the convergence of the exponential series  e^x   using D′Alermbert ratio test.

$${Verify}\:{the}\:{convergence}\:{of}\:{the}\:{exponential}\:{series}\:\:{e}^{{x}} \\ $$$${using}\:{D}'{Alermbert}\:{ratio}\:{test}. \\ $$

Commented by Yozzii last updated on 21/Jun/16

u_r =(x^r /(r!))⇒(u_(r+1) /u_r )=((x^(r+1) r!)/((r+1)!x^r ))=(x/(r+1))  ∴ lim_(r→∞) ∣(u_(r+1) /u_r )∣=lim_(r→∞) ((∣x∣)/(r+1))=((∣x∣)/∞)=0<1  ∵ lim_(r→∞) ∣(u_(r+1) /u_r )∣<1 for any x∈C, then e^x =Σ_(r=0) ^∞ (x^r /(r!))   is convergent for all x according to  D′Alambert′s Ratio test.

$${u}_{{r}} =\frac{{x}^{{r}} }{{r}!}\Rightarrow\frac{{u}_{{r}+\mathrm{1}} }{{u}_{{r}} }=\frac{{x}^{{r}+\mathrm{1}} {r}!}{\left({r}+\mathrm{1}\right)!{x}^{{r}} }=\frac{{x}}{{r}+\mathrm{1}} \\ $$$$\therefore\:\underset{{r}\rightarrow\infty} {\mathrm{lim}}\mid\frac{{u}_{{r}+\mathrm{1}} }{{u}_{{r}} }\mid=\underset{{r}\rightarrow\infty} {\mathrm{lim}}\frac{\mid{x}\mid}{{r}+\mathrm{1}}=\frac{\mid{x}\mid}{\infty}=\mathrm{0}<\mathrm{1} \\ $$$$\because\:\underset{{r}\rightarrow\infty} {\mathrm{lim}}\mid\frac{{u}_{{r}+\mathrm{1}} }{{u}_{{r}} }\mid<\mathrm{1}\:{for}\:{any}\:{x}\in\mathbb{C},\:{then}\:{e}^{{x}} =\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{r}} }{{r}!}\: \\ $$$${is}\:{convergent}\:{for}\:{all}\:{x}\:{according}\:{to} \\ $$$${D}'{Alambert}'{s}\:{Ratio}\:{test}. \\ $$

Commented by sanusihammed last updated on 21/Jun/16

Thanks for help

$${Thanks}\:{for}\:{help} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com