Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 62672 by bshahid010@gmail.com last updated on 24/Jun/19

Commented by Rasheed.Sindhi last updated on 24/Jun/19

b∈I, I means irrational?

bI,Imeansirrational?

Commented by mr W last updated on 24/Jun/19

i think he means integers.

ithinkhemeansintegers.

Commented by MJS last updated on 24/Jun/19

I don′t understand. what does “independent”  mean? what does b∈I mean?

Idontunderstand.whatdoesindependentmean?whatdoesbImean?

Commented by mr W last updated on 24/Jun/19

rasheed sir: can you give a solution  to this question? assume b=integer.

rasheedsir:canyougiveasolutiontothisquestion?assumeb=integer.

Commented by bshahid010@gmail.com last updated on 24/Jun/19

Here I means integer which...I denotes the set of Integers.  Independent means that should not be related to each  other anyways

HereImeansintegerwhich...IdenotesthesetofIntegers.Independentmeansthatshouldnotberelatedtoeachotheranyways

Commented by Rasheed.Sindhi last updated on 24/Jun/19

Counter Example  a=8(integer),b=3(odd prime),c=5(odd prime  b^2 −4ac=8^2 −4(3)(5)=4 perfect square  ⇒ Roots are rational  (Yet both roots are dependant on a,b,c  dependant in a sense that their solution  involve the above values of a,b & c ???)    x=((−3±2)/(2(8)))=−(1/(16)),−(5/(16))  Actually roots are always dependant  on a,b & c. So it′s questionable to say  about roots which are independant  of a,b,c.

CounterExamplea=8(integer),b=3(oddprime),c=5(oddprimeb24ac=824(3)(5)=4perfectsquareRootsarerational(Yetbothrootsaredependantona,b,cdependantinasensethattheirsolutioninvolvetheabovevaluesofa,b&c???)x=3±22(8)=116,516Actuallyrootsarealwaysdependantona,b&c.Soitsquestionabletosayaboutrootswhichareindependantofa,b,c.

Commented by mr W last updated on 24/Jun/19

i think it is meant that one of the  roots is a constant no matter which  values a,b,c are of.  in your example:  a=3,b=8,c=5  b^2 −4ac=4  x=((−8±2)/6)=−1,−(5/3)  i.e. x=−1,−(c/a)  i think one root is always −1,  independently from the values of  a,b,c.

ithinkitismeantthatoneoftherootsisaconstantnomatterwhichvaluesa,b,careof.inyourexample:a=3,b=8,c=5b24ac=4x=8±26=1,53i.e.x=1,caithinkonerootisalways1,independentlyfromthevaluesofa,b,c.

Commented by Rasheed.Sindhi last updated on 24/Jun/19

Sir, these two examples prove that  neither of the roots is constant,although  we have fulfilled all the requirements:  b integer, a,c odd primes and rational  roots.  b=8,a=3,b=5  b=8,a=5,b=3  ⇒ In both cases roots are rational  But no root is same!

Sir,thesetwoexamplesprovethatneitheroftherootsisconstant,althoughwehavefulfilledalltherequirements:binteger,a,coddprimesandrationalroots.b=8,a=3,b=5b=8,a=5,b=3InbothcasesrootsarerationalButnorootissame!

Commented by MJS last updated on 24/Jun/19

a=p c=p±2n       b=±2(n+p) ⇒ x=∓1∨x=∓((2n+p)/p)       b=±[p(2n+p)+1] ⇒ x=∓(2n+p)∨x=∓(1/p)

a=pc=p±2nb=±2(n+p)x=1x=2n+ppb=±[p(2n+p)+1]x=(2n+p)x=1p

Answered by mr W last updated on 24/Jun/19

x=((−b±(√(b^2 −4ac)))/(2a))=((−b±n)/(2a))  b^2 −4ac=n^2 , say  b^2 −n^2 =4ac  (b−n)(b+n)=4ac=2^2 a^1 c^1   ⇒b and n must be both even or odd.  i.e. b−n and b+n must be even.  since a and c are odd primes, RHS  has 3×2×2=12 factors, or it can  be expressed as the product of two  numbers in 6 ways:  4ac=1×4ac=2×2ac=4×ac=a×4c=2a×2c=4a×c    case 1:  { ((b−n=1 ⇒ bad!)),((b+n=4ac)) :}  case 2:  { ((b−n=2 ⇒ b=ac+1, n=ac−1)),((b+n=2ac)) :}  case 2′:  { ((b−n=2ac ⇒ b=ac+1, n=1−ac)),((b+n=2)) :}  case 3:  { ((b−n=4)),((b+n=ac ⇒ bad!)) :}  case 4:  { ((b−n=a ⇒ bad!)),((b+n=4c)) :}  case 5:  { ((b−n=2a ⇒ b=c+a, n=c−a)),((b+n=2c)) :}  case 5′:  { ((b−n=2c ⇒ b=c+a, n=a−c)),((b+n=2a)) :}  case 6:  { ((b−n=4a)),((b+n=c ⇒ bad!)) :}  we see only case 2 and case 5 are suitable.    from case 2+2′:  b=ac+1  x=((−b±n)/(2a))=((−ac−1±(1−ac))/(2a))= { ((−(1/a))),((−c)) :}  from case 5+5′:  b=a+c  x=((−b±n)/(2a))=((−c−a±(c−a))/(2a))= { ((−1)),((−(c/a))) :}    summary:  to fulfill the condictions, b must  be ac+1 or a+c. with b=a+c, one  root is always −1. but with b=ac+1,  both roots are dependent from a and c,  that is to say the question is not  correct!

x=b±b24ac2a=b±n2ab24ac=n2,sayb2n2=4ac(bn)(b+n)=4ac=22a1c1bandnmustbebothevenorodd.i.e.bnandb+nmustbeeven.sinceaandcareoddprimes,RHShas3×2×2=12factors,oritcanbeexpressedastheproductoftwonumbersin6ways:4ac=1×4ac=2×2ac=4×ac=a×4c=2a×2c=4a×ccase1:{bn=1bad!b+n=4accase2:{bn=2b=ac+1,n=ac1b+n=2accase2:{bn=2acb=ac+1,n=1acb+n=2case3:{bn=4b+n=acbad!case4:{bn=abad!b+n=4ccase5:{bn=2ab=c+a,n=cab+n=2ccase5:{bn=2cb=c+a,n=acb+n=2acase6:{bn=4ab+n=cbad!weseeonlycase2andcase5aresuitable.fromcase2+2:b=ac+1x=b±n2a=ac1±(1ac)2a={1acfromcase5+5:b=a+cx=b±n2a=ca±(ca)2a={1casummary:tofulfillthecondictions,bmustbeac+1ora+c.withb=a+c,onerootisalways1.butwithb=ac+1,bothrootsaredependentfromaandc,thatistosaythequestionisnotcorrect!

Commented by Rasheed.Sindhi last updated on 24/Jun/19

Matchless approach Sir!

MatchlessapproachSir!

Commented by mr W last updated on 24/Jun/19

thanks sir! but i just proved that the  question is not correct.

thankssir!butijustprovedthatthequestionisnotcorrect.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com