Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 62679 by ajfour last updated on 24/Jun/19

Let f be defined in the neighborhood  of x and that f ′′(x) exists.  Prove that     lim_(h→0) ((f(x+h)+f(x−h)−2f(x))/h^2 )=f ′′(x) .

$${Let}\:{f}\:{be}\:{defined}\:{in}\:{the}\:{neighborhood} \\ $$$${of}\:{x}\:{and}\:{that}\:{f}\:''\left({x}\right)\:{exists}. \\ $$$${Prove}\:{that}\:\: \\ $$$$\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left({x}+{h}\right)+{f}\left({x}−{h}\right)−\mathrm{2}{f}\left({x}\right)}{{h}^{\mathrm{2}} }={f}\:''\left({x}\right)\:. \\ $$

Commented by kaivan.ahmadi last updated on 24/Jun/19

hi sir, check the quoestion please

$${hi}\:{sir},\:{check}\:{the}\:{quoestion}\:{please} \\ $$

Commented by ajfour last updated on 24/Jun/19

Its correct, Sir.

$${Its}\:{correct},\:{Sir}. \\ $$

Commented by MJS last updated on 24/Jun/19

I think it should be h→0?

$$\mathrm{I}\:\mathrm{think}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:{h}\rightarrow\mathrm{0}? \\ $$

Commented by kaivan.ahmadi last updated on 24/Jun/19

if  h→0  (0/0)  =^(Hop)  lim_(h→0 )  ((f′(x+h)−f′(x−h))/(2h)) =^(Hop)   lim_(h→0)   ((f′′(x+h)+f′′(x−h))/2)=((2f′′(x))/2)=f′′(x)  this way is true  i had a mistake in previous solution    ((d/dh)(2f(x))=0)

$${if}\:\:{h}\rightarrow\mathrm{0} \\ $$$$\frac{\mathrm{0}}{\mathrm{0}} \\ $$$$\overset{{Hop}} {=}\:{lim}_{{h}\rightarrow\mathrm{0}\:} \:\frac{{f}'\left({x}+{h}\right)−{f}'\left({x}−{h}\right)}{\mathrm{2}{h}}\:\overset{{Hop}} {=} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} \:\:\frac{{f}''\left({x}+{h}\right)+{f}''\left({x}−{h}\right)}{\mathrm{2}}=\frac{\mathrm{2}{f}''\left({x}\right)}{\mathrm{2}}={f}''\left({x}\right) \\ $$$${this}\:{way}\:{is}\:{true} \\ $$$${i}\:{had}\:{a}\:{mistake}\:{in}\:{previous}\:{solution} \\ $$$$ \\ $$$$\left(\frac{{d}}{{dh}}\left(\mathrm{2}{f}\left({x}\right)\right)=\mathrm{0}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Mr X pcx last updated on 24/Jun/19

hospital theorem let  u(h)=f(x+h)+f(x+h)−2f(x)  v(h) =h^2   lim_(h→0) u(h)=lim_(h→0) v(h)=0  u^′ (h) =f^′ (x+h)+f^′ (x+h)∫→2f^′ (x)  u^(′′) (h) =f^(′′) (x+h)+f^(′′) (x+h)→2f^(′′) (x)  v^′ (h)=2h →0  v^(′′) (h) =2 ⇒  lim_(h→0)   ((f(x+h)+f(x+h)−2f(x))/h^2 )  =((2f^(′′) (x))/2) =f^(′′) (x) .

$${hospital}\:{theorem}\:{let} \\ $$$${u}\left({h}\right)={f}\left({x}+{h}\right)+{f}\left({x}+{h}\right)−\mathrm{2}{f}\left({x}\right) \\ $$$${v}\left({h}\right)\:={h}^{\mathrm{2}} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} {u}\left({h}\right)={lim}_{{h}\rightarrow\mathrm{0}} {v}\left({h}\right)=\mathrm{0} \\ $$$${u}^{'} \left({h}\right)\:={f}^{'} \left({x}+{h}\right)+{f}^{'} \left({x}+{h}\right)\int\rightarrow\mathrm{2}{f}^{'} \left({x}\right) \\ $$$${u}^{''} \left({h}\right)\:={f}^{''} \left({x}+{h}\right)+{f}^{''} \left({x}+{h}\right)\rightarrow\mathrm{2}{f}^{''} \left({x}\right) \\ $$$${v}^{'} \left({h}\right)=\mathrm{2}{h}\:\rightarrow\mathrm{0} \\ $$$${v}^{''} \left({h}\right)\:=\mathrm{2}\:\Rightarrow \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} \:\:\frac{{f}\left({x}+{h}\right)+{f}\left({x}+{h}\right)−\mathrm{2}{f}\left({x}\right)}{{h}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}{f}^{''} \left({x}\right)}{\mathrm{2}}\:={f}^{''} \left({x}\right)\:. \\ $$

Answered by mr W last updated on 24/Jun/19

f′′(x)=lim_(h→0) ((f ′(x+(h/2))−f ′(x−(h/2)))/h)  f′′(x)=lim_(h→0) ((((f(x+h)−f(x))/h)−((f(x)−f(x−h))/h))/h)  f′′(x)=lim_(h→0) ((f(x+h)+f(x−h)−2f(x))/h^2 )

$${f}''\left({x}\right)=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\:'\left({x}+\frac{{h}}{\mathrm{2}}\right)−{f}\:'\left({x}−\frac{{h}}{\mathrm{2}}\right)}{{h}} \\ $$$${f}''\left({x}\right)=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}}−\frac{{f}\left({x}\right)−{f}\left({x}−{h}\right)}{{h}}}{{h}} \\ $$$${f}''\left({x}\right)=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left({x}+{h}\right)+{f}\left({x}−{h}\right)−\mathrm{2}{f}\left({x}\right)}{{h}^{\mathrm{2}} } \\ $$

Commented by ajfour last updated on 24/Jun/19

Thanks Sir, nice way!

$${Thanks}\:{Sir},\:{nice}\:{way}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com