Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 6268 by sanusihammed last updated on 21/Jun/16

Test for convergence of the series   ∞  Σ     ((sin(nx))/n^2 )  n = 1

$${Test}\:{for}\:{convergence}\:{of}\:{the}\:{series}\: \\ $$$$\infty \\ $$$$\Sigma\:\:\:\:\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{2}} } \\ $$$${n}\:=\:\mathrm{1}\: \\ $$

Commented by FilupSmith last updated on 21/Jun/16

sin(ax+b)∈(−1, 1)  ∴ ∃k:n^k ≥sin(ax+b),   k,n∈Z^+     lim_(n→∞)  ((sin(nx))/n^2 ) = ((constant)/∞),   constant∈(−1, 1)  =0    ∴ limit converges

$$\mathrm{sin}\left({ax}+{b}\right)\in\left(−\mathrm{1},\:\mathrm{1}\right) \\ $$$$\therefore\:\exists{k}:{n}^{{k}} \geqslant\mathrm{sin}\left({ax}+{b}\right),\:\:\:{k},{n}\in\mathbb{Z}^{+} \\ $$$$ \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{sin}\left({nx}\right)}{{n}^{\mathrm{2}} }\:=\:\frac{\mathrm{constant}}{\infty},\:\:\:\mathrm{constant}\in\left(−\mathrm{1},\:\mathrm{1}\right) \\ $$$$=\mathrm{0} \\ $$$$ \\ $$$$\therefore\:\mathrm{limit}\:\mathrm{converges} \\ $$

Commented by sanusihammed last updated on 21/Jun/16

Thanks

$${Thanks} \\ $$

Answered by Yozzii last updated on 21/Jun/16

Since ∣sin(nx)∣≤1 for all n,x∈R  ⇒((∣sin(nx)∣)/n^2 )≤(1/n^2 )  ⇒Σ_(n=1) ^∞ ((∣sin(nx)∣)/n^2 )≤Σ_(n=1) ^∞ (1/n^2 )  Now, Σ_(n=1) ^∞ (1/n^2 ) is convergent. (ζ(2)=Σ_(n=1) ^∞ (1/n^2 )=(π^2 /6)).  Since Σ_(n=1) ^∞ (1/n^2 )  is convergent and Σ_(n=1) ^∞ ((∣sin(nx)∣)/n^2 )≤Σ_(n=1) ^∞ (1/n^2 ),  then the comparison test states that   Σ_(n=1) ^∞ ((∣sin(nx)∣)/n^2 )=Σ_(n=1) ^∞ ∣((sin(nx))/n^2 )∣ is convergent. Since  for an absolutely convergent series Σ∣a_n ∣  implies that Σa_n  is convergent, then  Σ_(n=1) ^∞ ((sin(nx))/n^2 ) is convergent.

$${Since}\:\mid{sin}\left({nx}\right)\mid\leqslant\mathrm{1}\:{for}\:{all}\:{n},{x}\in\mathbb{R} \\ $$$$\Rightarrow\frac{\mid{sin}\left({nx}\right)\mid}{{n}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mid{sin}\left({nx}\right)\mid}{{n}^{\mathrm{2}} }\leqslant\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$${Now},\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:{is}\:{convergent}.\:\left(\zeta\left(\mathrm{2}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\right). \\ $$$${Since}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:{is}\:{convergent}\:{and}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mid{sin}\left({nx}\right)\mid}{{n}^{\mathrm{2}} }\leqslant\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }, \\ $$$${then}\:{the}\:{comparison}\:{test}\:{states}\:{that}\: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mid{sin}\left({nx}\right)\mid}{{n}^{\mathrm{2}} }=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mid\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{2}} }\mid\:{is}\:{convergent}.\:{Since} \\ $$$${for}\:{an}\:{absolutely}\:{convergent}\:{series}\:\Sigma\mid{a}_{{n}} \mid \\ $$$${implies}\:{that}\:\Sigma{a}_{{n}} \:{is}\:{convergent},\:{then} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{2}} }\:{is}\:{convergent}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by sanusihammed last updated on 21/Jun/16

Thanks for help

$${Thanks}\:{for}\:{help} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com