Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 6275 by Rasheed Soomro last updated on 21/Jun/16

Solve the system of following equation  xy−z=3  yz−x=18  zx−y=6

$${Solve}\:{the}\:{system}\:{of}\:{following}\:{equation} \\ $$$${xy}−{z}=\mathrm{3} \\ $$$${yz}−{x}=\mathrm{18} \\ $$$${zx}−{y}=\mathrm{6} \\ $$

Commented by sanusihammed last updated on 21/Jun/16

  x = 0 and  y = −6 and  z  = −3  or  x = 2 and y = 4 and z  = 5

$$ \\ $$$${x}\:=\:\mathrm{0}\:{and}\:\:{y}\:=\:−\mathrm{6}\:{and}\:\:{z}\:\:=\:−\mathrm{3} \\ $$$${or} \\ $$$${x}\:=\:\mathrm{2}\:{and}\:{y}\:=\:\mathrm{4}\:{and}\:{z}\:\:=\:\mathrm{5} \\ $$

Commented by Rasheed Soomro last updated on 21/Jun/16

Write process please.

$${Write}\:{process}\:{please}. \\ $$

Commented by sanusihammed last updated on 21/Jun/16

Given  xy − z = 3     ............ (i)  yz − x = 18    ........ (ii)  zx − y = 6      .......... (iii)    Solving the first equation for z yields  xy − z = 3  z = xy − 3    So the other two equation becomes  yz − x = 18  y(xy − 3) − x = 18  xy^2  − 3y − x = 18    ............ (iv)  And  zx − y = 6  (xy − 3)x − y = 6  x^2 y − 3x − y = 6    ........... (v)    Solving for y in (v)  x^2 y − 3x − y = 6  y(x^2  − 1) − 3x = 6  y = ((3x + 6)/(x^2  − 1))                .......... (vi)    Substitute this new value of y in (iv)  xy^2  − 3y − x = 18  x(((3x + 6)/(x^2  − 1)))^2 − x − 3(((3x + 6)/(x^2  − 1))) = 18    Multiply through by (x^2  − 1)^2     x(3x + 6)^2  − x − 3(3x + 6)(x^2  − 1) = 18(x^2  − 1)^2     Simplify you will get     x^5  + 18x^4  − 2x^(3 ) − 54x^2  − 44x = 0  x(x^4  + 18x^3  − 2x^2  − 54x − 44) = 0  x = 0 or x^4  + 18x^3  − 2x^2  − 54x − 44 = 0    Consider:  x^4  + 18x^3  − 2x^2  − 54x − 44 = 0    By rational root theorem, we find that x = 2 is also a   solution  thus (x − 2) is a factor and we obtain    (x − 2)(x^3  + 20x^2  + 38x + 22) = 0    x − 2 = 0 or x^3  + 20x^2  + 38x + 22 = 0    x = 2   and the other solution are irational.    therefore,     x = 0, x = 2 are the only real solution.    from (iv)    y = ((3x + 6)/(x^2  − 1))  when  x  =  0    y = ((3(0) + 6)/(0^2  − 1))    y = (6/(−1))  y = −6    when x = 0 and y = −6  then from  z = xy − 3  z = 0(−6) − 3  z = −3    Thus, x = 0, y = −6, z = −3    Again for the second real number    when x = 2  y = ((3(2) + 6)/((2)^2  − 1))  y = ((12)/3)  y = 4    z = (2 × 4) − 3  z = 8 − 3  z = 5    Thus, x = 2, y = 4, z = 5    Those are the real answers. you can get other imaginary   answers by solving the x^3  + 20x^2  + 38x + 22    DONE !

$${Given} \\ $$$${xy}\:−\:{z}\:=\:\mathrm{3}\:\:\:\:\:............\:\left({i}\right) \\ $$$${yz}\:−\:{x}\:=\:\mathrm{18}\:\:\:\:........\:\left({ii}\right) \\ $$$${zx}\:−\:{y}\:=\:\mathrm{6}\:\:\:\:\:\:..........\:\left({iii}\right) \\ $$$$ \\ $$$${Solving}\:{the}\:{first}\:{equation}\:{for}\:{z}\:{yields} \\ $$$${xy}\:−\:{z}\:=\:\mathrm{3} \\ $$$${z}\:=\:{xy}\:−\:\mathrm{3} \\ $$$$ \\ $$$${So}\:{the}\:{other}\:{two}\:{equation}\:{becomes} \\ $$$${yz}\:−\:{x}\:=\:\mathrm{18} \\ $$$${y}\left({xy}\:−\:\mathrm{3}\right)\:−\:{x}\:=\:\mathrm{18} \\ $$$${xy}^{\mathrm{2}} \:−\:\mathrm{3}{y}\:−\:{x}\:=\:\mathrm{18}\:\:\:\:............\:\left({iv}\right) \\ $$$${And} \\ $$$${zx}\:−\:{y}\:=\:\mathrm{6} \\ $$$$\left({xy}\:−\:\mathrm{3}\right){x}\:−\:{y}\:=\:\mathrm{6} \\ $$$${x}^{\mathrm{2}} {y}\:−\:\mathrm{3}{x}\:−\:{y}\:=\:\mathrm{6}\:\:\:\:...........\:\left({v}\right) \\ $$$$ \\ $$$${Solving}\:{for}\:{y}\:{in}\:\left({v}\right) \\ $$$${x}^{\mathrm{2}} {y}\:−\:\mathrm{3}{x}\:−\:{y}\:=\:\mathrm{6} \\ $$$${y}\left({x}^{\mathrm{2}} \:−\:\mathrm{1}\right)\:−\:\mathrm{3}{x}\:=\:\mathrm{6} \\ $$$${y}\:=\:\frac{\mathrm{3}{x}\:+\:\mathrm{6}}{{x}^{\mathrm{2}} \:−\:\mathrm{1}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:..........\:\left({vi}\right) \\ $$$$ \\ $$$${Substitute}\:{this}\:{new}\:{value}\:{of}\:{y}\:{in}\:\left({iv}\right) \\ $$$${xy}^{\mathrm{2}} \:−\:\mathrm{3}{y}\:−\:{x}\:=\:\mathrm{18} \\ $$$${x}\left(\frac{\mathrm{3}{x}\:+\:\mathrm{6}}{{x}^{\mathrm{2}} \:−\:\mathrm{1}}\right)^{\mathrm{2}} −\:{x}\:−\:\mathrm{3}\left(\frac{\mathrm{3}{x}\:+\:\mathrm{6}}{{x}^{\mathrm{2}} \:−\:\mathrm{1}}\right)\:=\:\mathrm{18} \\ $$$$ \\ $$$${Multiply}\:{through}\:{by}\:\left({x}^{\mathrm{2}} \:−\:\mathrm{1}\right)^{\mathrm{2}} \\ $$$$ \\ $$$${x}\left(\mathrm{3}{x}\:+\:\mathrm{6}\right)^{\mathrm{2}} \:−\:{x}\:−\:\mathrm{3}\left(\mathrm{3}{x}\:+\:\mathrm{6}\right)\left({x}^{\mathrm{2}} \:−\:\mathrm{1}\right)\:=\:\mathrm{18}\left({x}^{\mathrm{2}} \:−\:\mathrm{1}\right)^{\mathrm{2}} \\ $$$$ \\ $$$${Simplify}\:{you}\:{will}\:{get}\: \\ $$$$ \\ $$$${x}^{\mathrm{5}} \:+\:\mathrm{18}{x}^{\mathrm{4}} \:−\:\mathrm{2}{x}^{\mathrm{3}\:} −\:\mathrm{54}{x}^{\mathrm{2}} \:−\:\mathrm{44}{x}\:=\:\mathrm{0} \\ $$$${x}\left({x}^{\mathrm{4}} \:+\:\mathrm{18}{x}^{\mathrm{3}} \:−\:\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{54}{x}\:−\:\mathrm{44}\right)\:=\:\mathrm{0} \\ $$$${x}\:=\:\mathrm{0}\:{or}\:{x}^{\mathrm{4}} \:+\:\mathrm{18}{x}^{\mathrm{3}} \:−\:\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{54}{x}\:−\:\mathrm{44}\:=\:\mathrm{0} \\ $$$$ \\ $$$${Consider}: \\ $$$${x}^{\mathrm{4}} \:+\:\mathrm{18}{x}^{\mathrm{3}} \:−\:\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{54}{x}\:−\:\mathrm{44}\:=\:\mathrm{0} \\ $$$$ \\ $$$${By}\:{rational}\:{root}\:{theorem},\:{we}\:{find}\:{that}\:{x}\:=\:\mathrm{2}\:{is}\:{also}\:{a}\: \\ $$$${solution} \\ $$$${thus}\:\left({x}\:−\:\mathrm{2}\right)\:{is}\:{a}\:{factor}\:{and}\:{we}\:{obtain} \\ $$$$ \\ $$$$\left({x}\:−\:\mathrm{2}\right)\left({x}^{\mathrm{3}} \:+\:\mathrm{20}{x}^{\mathrm{2}} \:+\:\mathrm{38}{x}\:+\:\mathrm{22}\right)\:=\:\mathrm{0} \\ $$$$ \\ $$$${x}\:−\:\mathrm{2}\:=\:\mathrm{0}\:{or}\:{x}^{\mathrm{3}} \:+\:\mathrm{20}{x}^{\mathrm{2}} \:+\:\mathrm{38}{x}\:+\:\mathrm{22}\:=\:\mathrm{0} \\ $$$$ \\ $$$${x}\:=\:\mathrm{2}\:\:\:{and}\:{the}\:{other}\:{solution}\:{are}\:{irational}. \\ $$$$ \\ $$$${therefore},\: \\ $$$$ \\ $$$${x}\:=\:\mathrm{0},\:{x}\:=\:\mathrm{2}\:{are}\:{the}\:{only}\:{real}\:{solution}. \\ $$$$ \\ $$$${from}\:\left({iv}\right) \\ $$$$ \\ $$$${y}\:=\:\frac{\mathrm{3}{x}\:+\:\mathrm{6}}{{x}^{\mathrm{2}} \:−\:\mathrm{1}} \\ $$$${when}\:\:{x}\:\:=\:\:\mathrm{0} \\ $$$$ \\ $$$${y}\:=\:\frac{\mathrm{3}\left(\mathrm{0}\right)\:+\:\mathrm{6}}{\mathrm{0}^{\mathrm{2}} \:−\:\mathrm{1}}\:\: \\ $$$${y}\:=\:\frac{\mathrm{6}}{−\mathrm{1}} \\ $$$${y}\:=\:−\mathrm{6} \\ $$$$ \\ $$$${when}\:{x}\:=\:\mathrm{0}\:{and}\:{y}\:=\:−\mathrm{6} \\ $$$${then}\:{from} \\ $$$${z}\:=\:{xy}\:−\:\mathrm{3} \\ $$$${z}\:=\:\mathrm{0}\left(−\mathrm{6}\right)\:−\:\mathrm{3} \\ $$$${z}\:=\:−\mathrm{3} \\ $$$$ \\ $$$${Thus},\:{x}\:=\:\mathrm{0},\:{y}\:=\:−\mathrm{6},\:{z}\:=\:−\mathrm{3} \\ $$$$ \\ $$$${Again}\:{for}\:{the}\:{second}\:{real}\:{number} \\ $$$$ \\ $$$${when}\:{x}\:=\:\mathrm{2} \\ $$$${y}\:=\:\frac{\mathrm{3}\left(\mathrm{2}\right)\:+\:\mathrm{6}}{\left(\mathrm{2}\right)^{\mathrm{2}} \:−\:\mathrm{1}} \\ $$$${y}\:=\:\frac{\mathrm{12}}{\mathrm{3}} \\ $$$${y}\:=\:\mathrm{4} \\ $$$$ \\ $$$${z}\:=\:\left(\mathrm{2}\:×\:\mathrm{4}\right)\:−\:\mathrm{3} \\ $$$${z}\:=\:\mathrm{8}\:−\:\mathrm{3} \\ $$$${z}\:=\:\mathrm{5} \\ $$$$ \\ $$$${Thus},\:{x}\:=\:\mathrm{2},\:{y}\:=\:\mathrm{4},\:{z}\:=\:\mathrm{5} \\ $$$$ \\ $$$${Those}\:{are}\:{the}\:{real}\:{answers}.\:{you}\:{can}\:{get}\:{other}\:{imaginary}\: \\ $$$${answers}\:{by}\:{solving}\:{the}\:{x}^{\mathrm{3}} \:+\:\mathrm{20}{x}^{\mathrm{2}} \:+\:\mathrm{38}{x}\:+\:\mathrm{22} \\ $$$$ \\ $$$${DONE}\:! \\ $$

Commented by Rasheed Soomro last updated on 22/Jun/16

Good approach!  I am also in search of  a bit tricky method  but have been not successful yet.  I had solved Q#6105(suggested by you), which was somewhat  resembling to this, in a tricky way.But this  question is more challenging!

$$\mathrm{Good}\:\mathrm{approach}! \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{also}\:\mathrm{in}\:\mathrm{search}\:\mathrm{of}\:\:\mathrm{a}\:\mathrm{bit}\:\mathrm{tricky}\:\mathrm{method} \\ $$$$\mathrm{but}\:\mathrm{have}\:\mathrm{been}\:\mathrm{not}\:\mathrm{successful}\:\mathrm{yet}. \\ $$$${I}\:{had}\:{solved}\:{Q}#\mathrm{6105}\left({suggested}\:{by}\:{you}\right),\:{which}\:{was}\:{somewhat} \\ $$$${resembling}\:{to}\:{this},\:{in}\:{a}\:{tricky}\:{way}.{But}\:{this} \\ $$$${question}\:{is}\:{more}\:{challenging}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com