All Questions Topic List
Coordinate Geometry Questions
Previous in All Question Next in All Question
Previous in Coordinate Geometry Next in Coordinate Geometry
Question Number 62753 by peter frank last updated on 24/Jun/19
ThenormalatthepointP(4cosθ,3sinθ)ontheellipsex216+y29=1meetsthex−axisandy−axisatAandBrespectivelyshowthatlocusofthemid−pointofABisanellipsewiththesameeccentricityasgivenellipse.
Answered by Hope last updated on 25/Jun/19
eqnnormal(y−3sinθ)=(−dxdy)(4cosθ,3sinθ)(x−4cosθ)x216+y29=12x×dxdy16+2y9=0x×dxdy8=−2y9→dxdy=−16y9x=−16×3sinθ9×4cosθ=−43tanθ(y−3sinθ)=4tanθ3(x−4cosθ)putx=0y−3sinθ=4sinθ3cosθ×−4cosθy=3sinθ−16sinθ3=−7sinθ3B(0,−7sinθ3)puty=0−3sinθ=4sinθ3cosθ(x−4cosθ)x=−9sinθcosθ4sinθ+4cosθx=−9cosθ+16cosθ4=7cosθ4A(7cosθ4,0)MidpointofAB=(7cosθ8,−7sinθ6)locusα=7cosθ8β=−7sinθ6(8α7)2+(6β−7)2=1locusx2(78)2+y2(76)2=1eccenrixity=(76)2−(78)276=67×7×64−3682×62e2=67×7×18×6×27=74x216+y29=1e1=16−94=74soe1=e2=74proved
Terms of Service
Privacy Policy
Contact: info@tinkutara.com