Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62805 by mathmax by abdo last updated on 25/Jun/19

calculate ∫_0 ^(+∞)   ((3x^2 −2)/((x^2 +1)( x^2 −2i)^2 )) dx

calculate0+3x22(x2+1)(x22i)2dx

Commented by mathmax by abdo last updated on 26/Jun/19

let I =∫_0 ^∞   ((3x^2 −2)/((x^2  +1)(x^2 −2i)^2 )) dx⇒2I =∫_(−∞) ^(+∞)   ((3x^2 −2)/((x^2 +1)(x^2 −2i)^2 ))dx let  w(z) =((3z^2 −2)/((z^2  +1)(z^2 −2i)^2 )) ⇒w(z) =((3z^2 −2)/((z−i)(z+i)(z−(√(2i)))^2 (z+(√(2i)))^2 ))  =((3z^2 −2)/((z−i)(z+i)(z−(√2)e^((iπ)/4) )^2 (z+(√2)e^((iπ)/4) )^2 ))  so the poles of w are +^− i and +^− (√2)e^((iπ)/4)   residus theorem give ∫_(−∞) ^(+∞)  w(z)dz =2iπ { Res(w,i)+Res(w,(√2)e^((iπ)/4) )}  Res(w,i) =lim_(z→i) (z−i)w(z) =((−5)/(2i(−1−2i)^2 )) =((−5)/(2i(2i+1)^2 )) =((−5)/(2i(−4+4i +1)))  =((−5)/(2i(−3+4i)))  Res(w,(√2)e^((iπ)/4) ) =lim_(z→(√2)e^((iπ)/4) )    (1/((2−1)!)){ (z−(√2)e^((iπ)/4) )^2 w(z)}^((1))   =lim_(z→(√2)e^((iπ)/4) )      {((3z^2 −2)/((z^2 +1)(z+(√2)e^((iπ)/4) )^2 ))}^((1))   =lim_(z→(√2)e^((iπ)/4) )     {((6z(z^2 +1)(z+(√2)e^((iπ)/4) )^2 −(3z^2 −2){2z(z+(√2)e^((iπ)/4) }^2 +2(z^2 +1)(z+(√2)e^((iπ)/4) ))/((z^2 +1)^2 (z+(√2)e^((iπ)/4) )^4 ))}  =lim_(z→(√2)e^((iπ)/4) )    {((6z(z^2  +1)(z+(√2)e^((iπ)/4) )−(3z^2 −2){2z(z+(√2)e^((iπ)/4) )+2(z^2 +1)})/((z^2  +1)^2 (z+(√2)e^((iπ)/4) )^3 ))}  ...be continued...

letI=03x22(x2+1)(x22i)2dx2I=+3x22(x2+1)(x22i)2dxletw(z)=3z22(z2+1)(z22i)2w(z)=3z22(zi)(z+i)(z2i)2(z+2i)2=3z22(zi)(z+i)(z2eiπ4)2(z+2eiπ4)2sothepolesofware+iand+2eiπ4residustheoremgive+w(z)dz=2iπ{Res(w,i)+Res(w,2eiπ4)}Res(w,i)=limzi(zi)w(z)=52i(12i)2=52i(2i+1)2=52i(4+4i+1)=52i(3+4i)Res(w,2eiπ4)=limz2eiπ41(21)!{(z2eiπ4)2w(z)}(1)=limz2eiπ4{3z22(z2+1)(z+2eiπ4)2}(1)=limz2eiπ4{6z(z2+1)(z+2eiπ4)2(3z22){2z(z+2eiπ4}2+2(z2+1)(z+2eiπ4)(z2+1)2(z+2eiπ4)4}=limz2eiπ4{6z(z2+1)(z+2eiπ4)(3z22){2z(z+2eiπ4)+2(z2+1)}(z2+1)2(z+2eiπ4)3}...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com