All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 62806 by mathmax by abdo last updated on 25/Jun/19
findthevalueof∫−∞+∞x+1(x4+x2+1)3dx
Commented by mathmax by abdo last updated on 27/Jun/19
letA=∫−∞+∞x+1(x4+x2+1)3dxletW(z)=z+1(z4+z2+1)3?polesofW?z4+z2+1=0⇒t2+t+1=0(withz2=t)Δ=1−4=(i3)2⇒t1=−1+i32=ei2π3(=j)andt2=−1−i32=e−i2π3(j−)⇒t2+t+1=(t−ei2π3)(t−e−i2π3)=(z2−ei2π3)(z2−e−i2π3)⇒W(z)=z+1{(z−eiπ3)(z+eiπ3)(z−e−iπ3)(z+e−iπ3)}3=z+1(z−eiπ3)3(z+eiπ3)3(z−e−iπ3)3(z+e−iπ3)3sothepolesofφare+−eiπ3and+−e−iπ3(triples)residustheoremgive∫−∞+∞W(z)dz=2iπ{Res(W,eiπ3)+Res(W,−e−iπ3)}Res(W,eiπ3)=limz→eiπ31(3−1)!{(z−eiπ3)3W(z)}(2)=limz→eiπ312{z+1(z+eiπ3)3(z2−e−i2π3)}(2)...becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com