Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62806 by mathmax by abdo last updated on 25/Jun/19

find the value of   ∫_(−∞) ^(+∞)    ((x+1)/((x^4  +x^2  +1)^3 ))dx

findthevalueof+x+1(x4+x2+1)3dx

Commented by mathmax by abdo last updated on 27/Jun/19

let A =∫_(−∞) ^(+∞)   ((x+1)/((x^4  +x^2  +1)^3 )) dx let W(z) =((z+1)/((z^4  +z^2  +1)^3 )) ?poles of W?  z^4  +z^2  +1 =0 ⇒t^2  +t+1=0 (with z^2 =t)  Δ =1−4 =(i(√3))^2  ⇒t_1 =((−1+i(√3))/2) =e^((i2π)/3) (=j) and t_2 =((−1−i(√3))/2) =e^(−((i2π)/3)) (j^− ) ⇒  t^2  +t +1 =(t−e^((i2π)/3) )(t−e^(−i((2π)/3)) ) =(z^2 −e^((i2π)/3) )(z^2 −e^(−((i2π)/3)) )  ⇒W(z) =((z+1)/({ (z−e^((iπ)/3) )(z+e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z+e^(−((iπ)/3)) )}^3 ))  =((z+1)/((z−e^((iπ)/3) )^3 (z+e^((iπ)/3) )^3 (z−e^(−((iπ)/3)) )^3 (z+e^(−((iπ)/3)) )^3 )) so the poles of ϕ are +^− e^((iπ)/3)  and +^− e^(−((iπ)/3))  (triples)  residus theorem give   ∫_(−∞) ^(+∞)  W(z)dz =2iπ { Res(W,e^((iπ)/3) ) +Res(W,−e^(−((iπ)/3)) )}  Res(W,e^((iπ)/3) ) =lim_(z→e^((iπ)/3) )     (1/((3−1)!)){ (z−e^((iπ)/3) )^3 W(z)}^((2))   =lim_(z→e^((iπ)/3) )     (1/2){  ((z+1)/((z+e^((iπ)/3) )^3 (z^2 −e^(−i((2π)/3)) )))}^((2))     ...be continued....

letA=+x+1(x4+x2+1)3dxletW(z)=z+1(z4+z2+1)3?polesofW?z4+z2+1=0t2+t+1=0(withz2=t)Δ=14=(i3)2t1=1+i32=ei2π3(=j)andt2=1i32=ei2π3(j)t2+t+1=(tei2π3)(tei2π3)=(z2ei2π3)(z2ei2π3)W(z)=z+1{(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)}3=z+1(zeiπ3)3(z+eiπ3)3(zeiπ3)3(z+eiπ3)3sothepolesofφare+eiπ3and+eiπ3(triples)residustheoremgive+W(z)dz=2iπ{Res(W,eiπ3)+Res(W,eiπ3)}Res(W,eiπ3)=limzeiπ31(31)!{(zeiπ3)3W(z)}(2)=limzeiπ312{z+1(z+eiπ3)3(z2ei2π3)}(2)...becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com