Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 62809 by mathmax by abdo last updated on 25/Jun/19

let f(x) = arctan(nx)   with n integr natural  1) calculate f^((n)) (x)  and f^((n)) (0)  2) developp f at integr serie .

letf(x)=arctan(nx)withnintegrnatural1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie.

Commented by mathmax by abdo last updated on 02/Jul/19

1) we have f^′ (x) =(n/(1+n^2 x^2 )) =(n/(n^2 (x^2  +(1/n^2 )))) =(1/(n(x−(i/n))(x+(i/n))))  =(1/n)(n/(2i)){(1/(x−(i/n))) −(1/(x+(i/n)))}  =(1/(2i)){ (1/(x−(i/n))) −(1/(x+(i/n)))} ⇒  f^((p)) (x) =(1/(2i)){  ((1/(x−(i/n))))^((p−1)) −((1/(x+(i/n))))^((p−1)) }=(1/(2i)){ (((−1)^(p−1) (p−1)!)/((x−(i/n))^p )) −(((−1)^(p−1) (p−1)!)/((x+(i/n))^p ))}  =(((−1)^(p−1) (p−1)!)/(2i)){(((x+(i/n))^p  −(x−(i/n))^p )/((x^2  +(1/n^2 ))^p ))} ⇒f^((p)) (0) =(((−1)^(p−1) (p−1)!)/(2i)) (n^(2p) /n^p )(((nx+i)^p −(nx−i)^p )/((x^2 n^2 +1)^p ))  f^((n)) (x) =(((−1)^(n−1) (n−1)!)/(2i)){ (((x+(i/n))^n  −(x−(i/n))^n )/((x^2  +(1/n^2 ))^n ))}  =((n^(2n) (−1)^(n−1) (n−1)!)/(2i)) (((nx+i)^n −(nx−i)^n )/((n^2 x^2  +1)^n ))×(1/n^n ) ⇒  f^((n)) (x)=((n^n (−1)^(n−1) (n−1)!)/(2i))(((nx+i)^n −(nx−i)^n )/((n^2 x^2  +1)^n ))  with n≥1  x=0 ⇒f^((n)) (0) =((n^n (−1)^(n−1) (n−1)!)/(2i)){  i^n −(−i)^n }  =((n^n (−1)^(n−1) (n−1)!)/(2i)) ×2iIm(i^n ) = n^n  (−1)^(n−1) (n−1)!sin(((nπ)/2))  2) f(x) =Σ_(p=0) ^∞   ((f^((p)) (0))/(p!)) x^p   =Σ_(p=0) ^∞    ((n^p (−1)^(p−1) )/(2i)) (((nx+i)^p −(nx−i)^p )/((n^2 x^2  +1)^p )) (x^p /p)

1)wehavef(x)=n1+n2x2=nn2(x2+1n2)=1n(xin)(x+in)=1nn2i{1xin1x+in}=12i{1xin1x+in}f(p)(x)=12i{(1xin)(p1)(1x+in)(p1)}=12i{(1)p1(p1)!(xin)p(1)p1(p1)!(x+in)p}=(1)p1(p1)!2i{(x+in)p(xin)p(x2+1n2)p}f(p)(0)=(1)p1(p1)!2in2pnp(nx+i)p(nxi)p(x2n2+1)pf(n)(x)=(1)n1(n1)!2i{(x+in)n(xin)n(x2+1n2)n}=n2n(1)n1(n1)!2i(nx+i)n(nxi)n(n2x2+1)n×1nnf(n)(x)=nn(1)n1(n1)!2i(nx+i)n(nxi)n(n2x2+1)nwithn1x=0f(n)(0)=nn(1)n1(n1)!2i{in(i)n}=nn(1)n1(n1)!2i×2iIm(in)=nn(1)n1(n1)!sin(nπ2)2)f(x)=p=0f(p)(0)p!xp=p=0np(1)p12i(nx+i)p(nxi)p(n2x2+1)pxpp

Terms of Service

Privacy Policy

Contact: info@tinkutara.com