All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 62809 by mathmax by abdo last updated on 25/Jun/19
letf(x)=arctan(nx)withnintegrnatural1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie.
Commented by mathmax by abdo last updated on 02/Jul/19
1)wehavef′(x)=n1+n2x2=nn2(x2+1n2)=1n(x−in)(x+in)=1nn2i{1x−in−1x+in}=12i{1x−in−1x+in}⇒f(p)(x)=12i{(1x−in)(p−1)−(1x+in)(p−1)}=12i{(−1)p−1(p−1)!(x−in)p−(−1)p−1(p−1)!(x+in)p}=(−1)p−1(p−1)!2i{(x+in)p−(x−in)p(x2+1n2)p}⇒f(p)(0)=(−1)p−1(p−1)!2in2pnp(nx+i)p−(nx−i)p(x2n2+1)pf(n)(x)=(−1)n−1(n−1)!2i{(x+in)n−(x−in)n(x2+1n2)n}=n2n(−1)n−1(n−1)!2i(nx+i)n−(nx−i)n(n2x2+1)n×1nn⇒f(n)(x)=nn(−1)n−1(n−1)!2i(nx+i)n−(nx−i)n(n2x2+1)nwithn⩾1x=0⇒f(n)(0)=nn(−1)n−1(n−1)!2i{in−(−i)n}=nn(−1)n−1(n−1)!2i×2iIm(in)=nn(−1)n−1(n−1)!sin(nπ2)2)f(x)=∑p=0∞f(p)(0)p!xp=∑p=0∞np(−1)p−12i(nx+i)p−(nx−i)p(n2x2+1)pxpp
Terms of Service
Privacy Policy
Contact: info@tinkutara.com