Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62811 by mathmax by abdo last updated on 25/Jun/19

1) find  ∫   ((2x^2 −1)/((x+1)(x−3)(x^2 −x+2)))dx  2)calculate ∫_5 ^(+∞)     ((2x^2 −1)/((x+1)(x−3)(x^2 −x+2)))dx

1)find2x21(x+1)(x3)(x2x+2)dx2)calculate5+2x21(x+1)(x3)(x2x+2)dx

Commented by Prithwish sen last updated on 25/Jun/19

1)((2x^2 −1)/((x+1)(x−3)(x^2 −x+2)))  =(A/(x+1)) + (B/(x−3)) +((Cx+D)/(x^2 −x+2))  By calculating we get  ∫[((−1)/(16(x+1))) +((17)/(32(x−3))) −((15(2x−1))/(32(x^2 −x+2))) −(1/(16(x^2 −x+2))) ] dx  = −(1/(16)) ln(x+1)+((17)/(32)) ln(x−3) −((15)/(32)) ln(x^2 −x+2)−(1/(8(√7))) tan^(−1) ((2x−1)/(√7)) +C  waiting for feedbacks

1)2x21(x+1)(x3)(x2x+2)=Ax+1+Bx3+Cx+Dx2x+2Bycalculatingweget[116(x+1)+1732(x3)15(2x1)32(x2x+2)116(x2x+2)]dx=116ln(x+1)+1732ln(x3)1532ln(x2x+2)187tan12x17+Cwaitingforfeedbacks

Commented by mathmax by abdo last updated on 26/Jun/19

1)let decompose F(x)=((2x^2 −1)/((x+1)(x−3)(x^2 −x+2)))  F(x)=(a/(x+1)) +(b/(x−3)) +((cx+d)/(x^2 −x+2))  a=lim_(x→−1) (x+1)F(x)=(1/((−4)(4))) =−(1/(16))  b=lim_(x→3) (x−3)F(x) =((17)/(4(8))) =((17)/(32)) ⇒F(x)=((−1)/(16(x+1))) +((17)/(32(x−3))) +((cx+d)/(x^2 −x+2))  lim_(x→+∞) xF(x)=0 =−(1/(16))+((17)/(32)) +c =((15)/(32)) +c ⇒c =−((15)/(32)) ⇒  F(x)=((−1)/(16(x+1))) +((17)/(32(x−3))) +((−((15)/(32))x+d)/(x^2 −x+2))  F(0)=((−1)/(−6)) =(1/6) =−(1/(16)) −((17)/(3.32)) +(d/2) ⇒(1/3) =−(1/8) −((17)/(48)) +d ⇒d =(1/3) +(1/8) +((17)/(48))  =((11)/(24)) +((17)/(48)) =((22+17)/(48)) =((39)/(48)) ⇒  ∫  ((2x^2 −1)/((x+1)(x−3)(x^2 −x+2)))dx  =−(1/(16))∫(dx/(x+1)) +((17)/(32))∫ (dx/(x−3)) −((15)/(32))∫  (x/(x^2 −x+2))dx +((39)/(48)) ∫  (dx/(x^2 −x+2)) +c  =−(1/(16))ln∣x+1∣+((17)/(32))ln∣x−3∣−((15)/(64)) ∫ ((2x−1+1)/(x^2 −x+2))dx +((39)/(48)) ∫   (dx/(x^2 −x+2)) +c  =−(1/(16))ln∣x+1∣+((17)/(32))ln∣x−3∣−((15)/(64))ln(x^2 −x+2)+(((39)/(48))−((15)/(64)))∫  (dx/(x^2 −x+2))dx +c but  ∫  (dx/(x^2 −x+2)) =∫   (dx/(x^2 −x+(1/4)+2−(1/4))) =∫  (dx/((x−(1/2))^2 +(7/4))) =_(x−(1/2)=((√7)/2)u) (4/7) ∫  (1/(1+u^2 ))((√7)/2)du  =(2/(√7)) arctan(((2x−1)/(√7))) ⇒  ∫ F(x)dx =−(1/(16))ln∣x+1∣+((17)/(32))ln∣x−3∣−((15)/(64))ln(x^2 −x+2)+(((39)/(48))−((15)/(64)))(2/(√7)) arctan(((2x−1)/(√7))) +c

1)letdecomposeF(x)=2x21(x+1)(x3)(x2x+2)F(x)=ax+1+bx3+cx+dx2x+2a=limx1(x+1)F(x)=1(4)(4)=116b=limx3(x3)F(x)=174(8)=1732F(x)=116(x+1)+1732(x3)+cx+dx2x+2limx+xF(x)=0=116+1732+c=1532+cc=1532F(x)=116(x+1)+1732(x3)+1532x+dx2x+2F(0)=16=16=116173.32+d213=181748+dd=13+18+1748=1124+1748=22+1748=39482x21(x+1)(x3)(x2x+2)dx=116dxx+1+1732dxx31532xx2x+2dx+3948dxx2x+2+c=116lnx+1+1732lnx315642x1+1x2x+2dx+3948dxx2x+2+c=116lnx+1+1732lnx31564ln(x2x+2)+(39481564)dxx2x+2dx+cbutdxx2x+2=dxx2x+14+214=dx(x12)2+74=x12=72u4711+u272du=27arctan(2x17)F(x)dx=116lnx+1+1732lnx31564ln(x2x+2)+(39481564)27arctan(2x17)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com