Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62814 by Cheyboy last updated on 25/Jun/19

Commented by Cheyboy last updated on 25/Jun/19

Please help me with these question

$${Please}\:{help}\:{me}\:{with}\:{these}\:{question} \\ $$

Commented by mathmax by abdo last updated on 25/Jun/19

3) let I =∫_0 ^∞  ((16 arctan(x))/(1+x^2 )) dx ⇒ I =16 ∫_0 ^∞   ((arctan(x))/(1+x^2 ))dx  by parts  ∫_0 ^∞  ((arctan(x))/(1+x^2 ))dx =[arctan^2 x]_0 ^(+∞)  −∫_0 ^∞  ((arctan(x))/(1+x^2 )) dx =(π^2 /4) −∫_0 ^∞ ((arctanx)/(1+x^2 ))dx  2 ∫_0 ^∞    ((arctan(x))/(1+x^2 ))dx =(π^2 /4) ⇒∫_0 ^∞   ((arctan(x))/(1+x^2 ))dx =(π^2 /8) ⇒I =16.(π^2 /8) ⇒ I =2π^2  .

$$\left.\mathrm{3}\right)\:{let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{16}\:{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\Rightarrow\:{I}\:=\mathrm{16}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\left[{arctan}^{\mathrm{2}} {x}\right]_{\mathrm{0}} ^{+\infty} \:−\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:−\int_{\mathrm{0}} ^{\infty} \frac{{arctanx}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:\Rightarrow{I}\:=\mathrm{16}.\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:\Rightarrow\:{I}\:=\mathrm{2}\pi^{\mathrm{2}} \:. \\ $$

Commented by Prithwish sen last updated on 25/Jun/19

a) ∫(du/(u^2 +3u+2))   putting e^t =u ⇒e^t dt=du  ∫(du/((u+2)(u+1))) =∫(1/(u+1)) −(1/(u+2))  du  =ln((e^t +1)/(e^t +2))  +C

$$\left.\mathrm{a}\right)\:\int\frac{\mathrm{du}}{\mathrm{u}^{\mathrm{2}} +\mathrm{3u}+\mathrm{2}}\:\:\:\mathrm{putting}\:\mathrm{e}^{\mathrm{t}} =\mathrm{u}\:\Rightarrow\mathrm{e}^{\mathrm{t}} \mathrm{dt}=\mathrm{du} \\ $$$$\int\frac{\mathrm{du}}{\left(\mathrm{u}+\mathrm{2}\right)\left(\mathrm{u}+\mathrm{1}\right)}\:=\int\frac{\mathrm{1}}{\mathrm{u}+\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{u}+\mathrm{2}}\:\:\mathrm{du} \\ $$$$=\mathrm{ln}\frac{\mathrm{e}^{\mathrm{t}} +\mathrm{1}}{\mathrm{e}^{\mathrm{t}} +\mathrm{2}}\:\:+\mathrm{C} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 25/Jun/19

2b) let A =∫   (e^t /(√(e^(2t)  +9))) dt  changememet e^t  =x ⇒t =ln(x)  A =∫  (x/(√(x^2  +9))) (dx/x) =∫   (dx/(√(x^2  +9))) =_(x=3u)     ∫   ((3du)/(3(√(1+u^2 )))) =ln(u+(√(1+u^2 )) +c  =ln((x/3) +(√(1+(x^2 /9)))) +c =ln(((x+(√(x^2  +9)))/3)) +c  =ln(x+(√(x^2  +9))) +C =ln( e^t  +(√(e^(2t)  +9))) +C .

$$\left.\mathrm{2}{b}\right)\:{let}\:{A}\:=\int\:\:\:\frac{{e}^{{t}} }{\sqrt{{e}^{\mathrm{2}{t}} \:+\mathrm{9}}}\:{dt}\:\:{changememet}\:{e}^{{t}} \:={x}\:\Rightarrow{t}\:={ln}\left({x}\right) \\ $$$${A}\:=\int\:\:\frac{{x}}{\sqrt{{x}^{\mathrm{2}} \:+\mathrm{9}}}\:\frac{{dx}}{{x}}\:=\int\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} \:+\mathrm{9}}}\:=_{{x}=\mathrm{3}{u}} \:\:\:\:\int\:\:\:\frac{\mathrm{3}{du}}{\mathrm{3}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:={ln}\left({u}+\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }\:+{c}\right. \\ $$$$={ln}\left(\frac{{x}}{\mathrm{3}}\:+\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{9}}}\right)\:+{c}\:={ln}\left(\frac{{x}+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{9}}}{\mathrm{3}}\right)\:+{c} \\ $$$$={ln}\left({x}+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{9}}\right)\:+{C}\:={ln}\left(\:{e}^{{t}} \:+\sqrt{{e}^{\mathrm{2}{t}} \:+\mathrm{9}}\right)\:+{C}\:. \\ $$

Commented by Cheyboy last updated on 25/Jun/19

THANK YOU ALL SIRS   FOR HELP WELL APPRECIATED

$$\mathbb{THANK}\:\mathbb{YOU}\:\mathbb{ALL}\:\mathbb{SIRS}\: \\ $$$$\mathbb{FOR}\:\mathbb{HELP}\:\mathbb{WELL}\:\mathbb{APPRECIATED} \\ $$

Commented by Prithwish sen last updated on 25/Jun/19

2b)∫(2cosysiny)^2 2sin^2 ydy  =∫sin^2 2y(1−cos2y)dy  =∫(1/2)(1−cos4y) dy − ∫sin^2 2ycos2y dy  =I_1 +I_2   I_1 =(y/2) −((sin4y)/8)  I_2 = ∫sin^2 2ycos2y dy     put sin2y = u ⇒cos2y dy = (du/2)  ∫u^2 (dy/2)=(u^3 /6) =(1/6) sin^3 2y  ∴ (y/2) −((sin4y)/8) +((sin^3 2y  )/6) +C

$$\left.\mathrm{2b}\right)\int\left(\mathrm{2cosysiny}\right)^{\mathrm{2}} \mathrm{2sin}^{\mathrm{2}} \mathrm{ydy} \\ $$$$=\int\mathrm{sin}^{\mathrm{2}} \mathrm{2y}\left(\mathrm{1}−\mathrm{cos2y}\right)\mathrm{dy} \\ $$$$=\int\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{cos4y}\right)\:\mathrm{dy}\:−\:\int\mathrm{sin}^{\mathrm{2}} \mathrm{2ycos2y}\:\mathrm{dy} \\ $$$$=\mathrm{I}_{\mathrm{1}} +\mathrm{I}_{\mathrm{2}} \\ $$$$\mathrm{I}_{\mathrm{1}} =\frac{\mathrm{y}}{\mathrm{2}}\:−\frac{\mathrm{sin4y}}{\mathrm{8}} \\ $$$$\mathrm{I}_{\mathrm{2}} =\:\int\mathrm{sin}^{\mathrm{2}} \mathrm{2ycos2y}\:\mathrm{dy}\:\:\: \\ $$$$\mathrm{put}\:\mathrm{sin2y}\:=\:\mathrm{u}\:\Rightarrow\mathrm{cos2y}\:\mathrm{dy}\:=\:\frac{\mathrm{du}}{\mathrm{2}} \\ $$$$\int\mathrm{u}^{\mathrm{2}} \frac{\mathrm{dy}}{\mathrm{2}}=\frac{\mathrm{u}^{\mathrm{3}} }{\mathrm{6}}\:=\frac{\mathrm{1}}{\mathrm{6}}\:\mathrm{sin}^{\mathrm{3}} \mathrm{2y} \\ $$$$\therefore\:\frac{\mathrm{y}}{\mathrm{2}}\:−\frac{\mathrm{sin4y}}{\mathrm{8}}\:+\frac{\mathrm{sin}^{\mathrm{3}} \mathrm{2y}\:\:}{\mathrm{6}}\:+\mathrm{C} \\ $$

Commented by Cheyboy last updated on 25/Jun/19

Thank alot sir

$${Thank}\:{alot}\:{sir} \\ $$

Commented by Cheyboy last updated on 25/Jun/19

Commented by mathmax by abdo last updated on 26/Jun/19

1a) let A=∫   (e^t /(e^(2t)  +3e^t  +2))dt  changement e^t  =x give  t=ln(x) ⇒  A =∫  (x/(x^2  +3x +2)) (dx/x) =∫   (dx/(x^2  +3x +2))  x^2  +3x +2 =0→Δ =9−8 =1 ⇒x_1 =((−3+1)/2) =−1 and x_2 =((−3−1)/2) =−2 ⇒  A =∫  (dx/((x+1)(x+2))) =∫ ((1/(x+1)) −(1/(x+2)))d =ln∣x+1∣−ln∣x+2∣ +c  =ln∣e^t  +1∣−ln∣e^t  +2∣ +c  =ln(1+e^t )−ln(2+e^t )+c .

$$\left.\mathrm{1}{a}\right)\:{let}\:{A}=\int\:\:\:\frac{{e}^{{t}} }{{e}^{\mathrm{2}{t}} \:+\mathrm{3}{e}^{{t}} \:+\mathrm{2}}{dt}\:\:{changement}\:{e}^{{t}} \:={x}\:{give}\:\:{t}={ln}\left({x}\right)\:\Rightarrow \\ $$$${A}\:=\int\:\:\frac{{x}}{{x}^{\mathrm{2}} \:+\mathrm{3}{x}\:+\mathrm{2}}\:\frac{{dx}}{{x}}\:=\int\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{3}{x}\:+\mathrm{2}} \\ $$$${x}^{\mathrm{2}} \:+\mathrm{3}{x}\:+\mathrm{2}\:=\mathrm{0}\rightarrow\Delta\:=\mathrm{9}−\mathrm{8}\:=\mathrm{1}\:\Rightarrow{x}_{\mathrm{1}} =\frac{−\mathrm{3}+\mathrm{1}}{\mathrm{2}}\:=−\mathrm{1}\:{and}\:{x}_{\mathrm{2}} =\frac{−\mathrm{3}−\mathrm{1}}{\mathrm{2}}\:=−\mathrm{2}\:\Rightarrow \\ $$$${A}\:=\int\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}\:=\int\:\left(\frac{\mathrm{1}}{{x}+\mathrm{1}}\:−\frac{\mathrm{1}}{{x}+\mathrm{2}}\right){d}\:={ln}\mid{x}+\mathrm{1}\mid−{ln}\mid{x}+\mathrm{2}\mid\:+{c} \\ $$$$={ln}\mid{e}^{{t}} \:+\mathrm{1}\mid−{ln}\mid{e}^{{t}} \:+\mathrm{2}\mid\:+{c}\:\:={ln}\left(\mathrm{1}+{e}^{{t}} \right)−{ln}\left(\mathrm{2}+{e}^{{t}} \right)+{c}\:. \\ $$

Commented by mathmax by abdo last updated on 27/Jun/19

b) let I =∫  ((cosx)/(sin^2 x+sinx −6)) dx    changement sinx =t give  I = ∫    (dt/(t^2  +t−6))     let slve t^2 +t−6 →Δ =1−4(−6) =25 ⇒t_1 =((−1+5)/2) =2  and t_2 =((−1−5)/2) =−3 ⇒ I =∫     (dt/((t−2)(t+3))) =(1/5)∫ ((1/(t−2)) −(1/(t+3)))dt  =(1/5){ln∣t−2∣−ln∣t+3∣} +c  =(1/5)ln∣((t−2)/(t+3))∣ +c =(1/5)ln∣((sinx−2)/(sinx +3))∣ +c .

$$\left.{b}\right)\:{let}\:{I}\:=\int\:\:\frac{{cosx}}{{sin}^{\mathrm{2}} {x}+{sinx}\:−\mathrm{6}}\:{dx}\:\:\:\:{changement}\:{sinx}\:={t}\:{give} \\ $$$${I}\:=\:\int\:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+{t}−\mathrm{6}}\:\:\:\:\:{let}\:{slve}\:{t}^{\mathrm{2}} +{t}−\mathrm{6}\:\rightarrow\Delta\:=\mathrm{1}−\mathrm{4}\left(−\mathrm{6}\right)\:=\mathrm{25}\:\Rightarrow{t}_{\mathrm{1}} =\frac{−\mathrm{1}+\mathrm{5}}{\mathrm{2}}\:=\mathrm{2} \\ $$$${and}\:{t}_{\mathrm{2}} =\frac{−\mathrm{1}−\mathrm{5}}{\mathrm{2}}\:=−\mathrm{3}\:\Rightarrow\:{I}\:=\int\:\:\:\:\:\frac{{dt}}{\left({t}−\mathrm{2}\right)\left({t}+\mathrm{3}\right)}\:=\frac{\mathrm{1}}{\mathrm{5}}\int\:\left(\frac{\mathrm{1}}{{t}−\mathrm{2}}\:−\frac{\mathrm{1}}{{t}+\mathrm{3}}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}\left\{{ln}\mid{t}−\mathrm{2}\mid−{ln}\mid{t}+\mathrm{3}\mid\right\}\:+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}{ln}\mid\frac{{t}−\mathrm{2}}{{t}+\mathrm{3}}\mid\:+{c}\:=\frac{\mathrm{1}}{\mathrm{5}}{ln}\mid\frac{{sinx}−\mathrm{2}}{{sinx}\:+\mathrm{3}}\mid\:+{c}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com