Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 62821 by ajfour last updated on 25/Jun/19

Commented by ajfour last updated on 25/Jun/19

If the right circular cone contains  half the spherical volume within  its lateral surface, find 𝛂.

$${If}\:{the}\:{right}\:{circular}\:{cone}\:{contains} \\ $$$${half}\:{the}\:{spherical}\:{volume}\:{within} \\ $$$${its}\:{lateral}\:{surface},\:{find}\:\boldsymbol{\alpha}. \\ $$

Answered by ajfour last updated on 25/Jun/19

Commented by ajfour last updated on 25/Jun/19

spherical cap volume S  S=∫_(h=cos 2Ξ±) ^(  1) Ο€(1βˆ’z^2 )dz      = Ο€{zβˆ’(z^3 /3)}∣_h ^1  = ((2Ο€)/3)βˆ’Ο€(hβˆ’(h^3 /3))  Conical volume C  C = (Ο€/3)r^2 (h+1)  And     r=htan 2Ξ±    Now     S+C=((2Ο€)/3)  (half spherical volume)  β‡’((2Ο€)/3)βˆ’Ο€(hβˆ’(h^3 /3))+(Ο€/3)r^2 (h+1)=((2Ο€)/3)  β‡’  hβˆ’(h^3 /3)=((h^2 (h+1)tan^2 2Ξ±)/3)  β‡’ 3βˆ’h^2 =(h^2 +h)(sec^2 2Ξ±βˆ’1)  And  as  h=cos 2Ξ±   3βˆ’h^2 =h(h+1)((1/h^2 )βˆ’1)  β‡’ 3hβˆ’h^3 =(h+1)(1βˆ’h^2 )  β‡’  3hβˆ’h^3 =h+1βˆ’h^3 βˆ’h^2   β‡’  h^2 +2hβˆ’1=0  β‡’   h=((βˆ’2+(√(4+4)))/2) = (√2)βˆ’1      2cos^2 Ξ±βˆ’1=(√2)βˆ’1  β‡’    Ξ± = cos^(βˆ’1) (1/(2)^(1/4) ) .

$${spherical}\:{cap}\:{volume}\:{S} \\ $$$${S}=\int_{{h}=\mathrm{cos}\:\mathrm{2}\alpha} ^{\:\:\mathrm{1}} \pi\left(\mathrm{1}βˆ’{z}^{\mathrm{2}} \right){dz} \\ $$$$\:\:\:\:=\:\pi\left\{{z}βˆ’\frac{{z}^{\mathrm{3}} }{\mathrm{3}}\right\}\mid_{{h}} ^{\mathrm{1}} \:=\:\frac{\mathrm{2}\pi}{\mathrm{3}}βˆ’\pi\left({h}βˆ’\frac{{h}^{\mathrm{3}} }{\mathrm{3}}\right) \\ $$$${Conical}\:{volume}\:{C} \\ $$$${C}\:=\:\frac{\pi}{\mathrm{3}}{r}^{\mathrm{2}} \left({h}+\mathrm{1}\right) \\ $$$${And}\:\:\:\:\:{r}={h}\mathrm{tan}\:\mathrm{2}\alpha \\ $$$$\:\:{Now}\:\:\:\:\:{S}+{C}=\frac{\mathrm{2}\pi}{\mathrm{3}}\:\:\left({half}\:{spherical}\:{volume}\right) \\ $$$$\Rightarrow\frac{\mathrm{2}\pi}{\mathrm{3}}βˆ’\pi\left({h}βˆ’\frac{{h}^{\mathrm{3}} }{\mathrm{3}}\right)+\frac{\pi}{\mathrm{3}}{r}^{\mathrm{2}} \left({h}+\mathrm{1}\right)=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\Rightarrow\:\:{h}βˆ’\frac{{h}^{\mathrm{3}} }{\mathrm{3}}=\frac{{h}^{\mathrm{2}} \left({h}+\mathrm{1}\right)\mathrm{tan}\:^{\mathrm{2}} \mathrm{2}\alpha}{\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{3}βˆ’{h}^{\mathrm{2}} =\left({h}^{\mathrm{2}} +{h}\right)\left(\mathrm{sec}\:^{\mathrm{2}} \mathrm{2}\alphaβˆ’\mathrm{1}\right) \\ $$$${And}\:\:{as}\:\:{h}=\mathrm{cos}\:\mathrm{2}\alpha \\ $$$$\:\mathrm{3}βˆ’{h}^{\mathrm{2}} ={h}\left({h}+\mathrm{1}\right)\left(\frac{\mathrm{1}}{{h}^{\mathrm{2}} }βˆ’\mathrm{1}\right) \\ $$$$\Rightarrow\:\mathrm{3}{h}βˆ’{h}^{\mathrm{3}} =\left({h}+\mathrm{1}\right)\left(\mathrm{1}βˆ’{h}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:\mathrm{3}{h}βˆ’{h}^{\mathrm{3}} ={h}+\mathrm{1}βˆ’{h}^{\mathrm{3}} βˆ’{h}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{h}^{\mathrm{2}} +\mathrm{2}{h}βˆ’\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{h}=\frac{βˆ’\mathrm{2}+\sqrt{\mathrm{4}+\mathrm{4}}}{\mathrm{2}}\:=\:\sqrt{\mathrm{2}}βˆ’\mathrm{1} \\ $$$$\:\:\:\:\mathrm{2cos}\:^{\mathrm{2}} \alphaβˆ’\mathrm{1}=\sqrt{\mathrm{2}}βˆ’\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:\alpha\:=\:\mathrm{cos}^{βˆ’\mathrm{1}} \left(\mathrm{1}/\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)\:. \\ $$

Answered by mr W last updated on 25/Jun/19

R=radius of sphere  k=height of cone  h=height of cap=2Rβˆ’k  r=radius of section circle cone / sphere  (r/k)=((2Rβˆ’k)/r)  β‡’r^2 =k(2Rβˆ’k)  volume of cone=((Ο€r^2 k)/3)=((Ο€k^2 (2Rβˆ’k))/3)  volume of cap=((Ο€h^2 (3Rβˆ’h))/3)=((Ο€(2Rβˆ’k)^2 (R+k))/3)  volume of sphere=((4Ο€R^3 )/3)  ((Ο€k^2 (2Rβˆ’k))/3)+((Ο€(2Rβˆ’k)^2 (R+k))/3)=(1/2)Γ—((4Ο€R^3 )/3)  (2Rβˆ’k)(2R+k)=2R^2   4R^2 βˆ’k^2 =2R^2   β‡’k=(√2)R  k=2R cos^2  Ξ±=(√2)R  β‡’cos^2  Ξ±=(1/(√2))  β‡’Ξ±=cos^(βˆ’1) (1/(2)^(1/4) )

$${R}={radius}\:{of}\:{sphere} \\ $$$${k}={height}\:{of}\:{cone} \\ $$$${h}={height}\:{of}\:{cap}=\mathrm{2}{R}βˆ’{k} \\ $$$${r}={radius}\:{of}\:{section}\:{circle}\:{cone}\:/\:{sphere} \\ $$$$\frac{{r}}{{k}}=\frac{\mathrm{2}{R}βˆ’{k}}{{r}} \\ $$$$\Rightarrow{r}^{\mathrm{2}} ={k}\left(\mathrm{2}{R}βˆ’{k}\right) \\ $$$${volume}\:{of}\:{cone}=\frac{\pi{r}^{\mathrm{2}} {k}}{\mathrm{3}}=\frac{\pi{k}^{\mathrm{2}} \left(\mathrm{2}{R}βˆ’{k}\right)}{\mathrm{3}} \\ $$$${volume}\:{of}\:{cap}=\frac{\pi{h}^{\mathrm{2}} \left(\mathrm{3}{R}βˆ’{h}\right)}{\mathrm{3}}=\frac{\pi\left(\mathrm{2}{R}βˆ’{k}\right)^{\mathrm{2}} \left({R}+{k}\right)}{\mathrm{3}} \\ $$$${volume}\:{of}\:{sphere}=\frac{\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\frac{\pi{k}^{\mathrm{2}} \left(\mathrm{2}{R}βˆ’{k}\right)}{\mathrm{3}}+\frac{\pi\left(\mathrm{2}{R}βˆ’{k}\right)^{\mathrm{2}} \left({R}+{k}\right)}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{2}}Γ—\frac{\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\left(\mathrm{2}{R}βˆ’{k}\right)\left(\mathrm{2}{R}+{k}\right)=\mathrm{2}{R}^{\mathrm{2}} \\ $$$$\mathrm{4}{R}^{\mathrm{2}} βˆ’{k}^{\mathrm{2}} =\mathrm{2}{R}^{\mathrm{2}} \\ $$$$\Rightarrow{k}=\sqrt{\mathrm{2}}{R} \\ $$$${k}=\mathrm{2}{R}\:\mathrm{cos}^{\mathrm{2}} \:\alpha=\sqrt{\mathrm{2}}{R} \\ $$$$\Rightarrow\mathrm{cos}^{\mathrm{2}} \:\alpha=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\alpha=\mathrm{cos}^{βˆ’\mathrm{1}} \frac{\mathrm{1}}{\sqrt[{\mathrm{4}}]{\mathrm{2}}} \\ $$

Commented by ajfour last updated on 25/Jun/19

Thanks for the solution, Sir.

$${Thanks}\:{for}\:{the}\:{solution},\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com