Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 62839 by ajfour last updated on 25/Jun/19

Commented by ajfour last updated on 25/Jun/19

let θ be angle between b and   extended c .  (c+bcos θ)^2 +b^2 sin^2 θ=r^2   (c+asin θ)^2 +a^2 cos^2 θ=r^2   ⇒      b^2 +c^2 +2bccos θ=r^2       a^2 +c^2 +2acsin θ=r^2   ⇒ 2c(asin θ−bcos θ)=b^2 −a^2   2c(√(a^2 +b^2 ))sin (θ−tan^(−1) (b/a))=b^2 −a^2   ⇒  θ=α+sin^(−1) (p/h) = α+β                           .....(I)  but on adding   2r^2 = a^2 +b^2 +2c^2 +2c(√(a^2 +b^2 ))sin (θ+tan^(−1) (b/a))  ⇒ r^2 =c^2 +((a^2 +b^2 )/2)+(h/2)sin (2α+β)      = c^2 +((a^2 +b^2 )/2)+(h/2){((2ab)/(a^2 +b^2 ))×(√(1−(p^2 /h^2 )))+(((2a^2 )/(a^2 +b^2 ))−1)(p/h)}  r^2 =c^2 +((a^2 +b^2 )/2)+((ab(√(h^2 −p^2 )))/(a^2 +b^2 ))+(((a^2 −b^2 )p)/(2(a^2 +b^2 )))  r^2 =c^2 +((a^2 +b^2 )/2)−(((b^2 −a^2 )^2 )/(2(a^2 +b^2 )))+((ab)/((a^2 +b^2 )))(√(4c^2 (a^2 +b^2 )−(b^2 −a^2 )^2 ))  ⇒ r^2 =c^2 +((2a^2 b^2 )/(a^2 +b^2 ))+((ab)/((a^2 +b^2 )))(√(4c^2 (a^2 +b^2 )−(b^2 −a^2 )^2 ))  r=(√(c^2 +((2a^2 b^2 )/(a^2 +b^2 ))+((ab)/((a^2 +b^2 )))(√(4c^2 (a^2 +b^2 )−(b^2 −a^2 )^2 ))))  .

letθbeanglebetweenbandextendedc.(c+bcosθ)2+b2sin2θ=r2(c+asinθ)2+a2cos2θ=r2b2+c2+2bccosθ=r2a2+c2+2acsinθ=r22c(asinθbcosθ)=b2a22ca2+b2sin(θtan1ba)=b2a2θ=α+sin1ph=α+β.....(I)butonadding2r2=a2+b2+2c2+2ca2+b2sin(θ+tan1ba)r2=c2+a2+b22+h2sin(2α+β)=c2+a2+b22+h2{2aba2+b2×1p2h2+(2a2a2+b21)ph}r2=c2+a2+b22+abh2p2a2+b2+(a2b2)p2(a2+b2)r2=c2+a2+b22(b2a2)22(a2+b2)+ab(a2+b2)4c2(a2+b2)(b2a2)2r2=c2+2a2b2a2+b2+ab(a2+b2)4c2(a2+b2)(b2a2)2r=c2+2a2b2a2+b2+ab(a2+b2)4c2(a2+b2)(b2a2)2.

Commented by ajfour last updated on 25/Jun/19

Find radius of circle in terms of  a,b,c . C is center of circle, and  segments of lengths a and b are  perpendicular to each other.

Findradiusofcircleintermsofa,b,c.Ciscenterofcircle,andsegmentsoflengthsaandbareperpendiculartoeachother.

Commented by behi83417@gmail.com last updated on 25/Jun/19

great question,sir Ajfour!  waitng for solution(s)..........

greatquestion,sirAjfour!waitngforsolution(s)..........

Answered by mr W last updated on 25/Jun/19

r=radius of circle  α=angle between a and c  β=angle between b and c  α+β+(π/2)=2π  ⇒α=2π−((π/2)+β)  ⇒cos α=−sin β  ⇒cos^2  α+cos^2  β=1  cos α=((a^2 +c^2 −r^2 )/(2ac))  cos β=((b^2 +c^2 −r^2 )/(2bc))  ⇒(((a^2 +c^2 −r^2 )/(2ac)))^2 +(((b^2 +c^2 −r^2 )/(2bc)))^2 =1  b^2 [a^4 +2a^2 c^2 +c^4 −2(a^2 +c^2 )r^2 +r^4 ]+a^2 [b^4 +2b^2 c^2 +c^4 −2(b^2 +c^2 )r^2 +r^4 ]=4a^2 b^2 c^2   (a^2 +b^2 )r^4 −2[2a^2 b^2 +(a^2 +b^2 )c^2 ]r^2 +(a^2 +b^2 )(a^2 b^2 +c^4 )=0  ⇒r^2 =((2a^2 b^2 +(a^2 +b^2 )c^2 +(√([2a^2 b^2 +(a^2 +b^2 )c^2 ]^2 −(a^2 +b^2 )^2 (a^2 b^2 +c^4 ))))/(a^2 +b^2 ))  ⇒r^2 =((2a^2 b^2 +(a^2 +b^2 )c^2 +ab(√(4(a^2 +b^2 )c^2 −(a^2 −b^2 )^2 )))/(a^2 +b^2 ))  ⇒r=(√((2a^2 b^2 +(a^2 +b^2 )c^2 +ab(√(4(a^2 +b^2 )c^2 −(a^2 −b^2 )^2 )))/(a^2 +b^2 )))

r=radiusofcircleα=anglebetweenaandcβ=anglebetweenbandcα+β+π2=2πα=2π(π2+β)cosα=sinβcos2α+cos2β=1cosα=a2+c2r22accosβ=b2+c2r22bc(a2+c2r22ac)2+(b2+c2r22bc)2=1b2[a4+2a2c2+c42(a2+c2)r2+r4]+a2[b4+2b2c2+c42(b2+c2)r2+r4]=4a2b2c2(a2+b2)r42[2a2b2+(a2+b2)c2]r2+(a2+b2)(a2b2+c4)=0r2=2a2b2+(a2+b2)c2+[2a2b2+(a2+b2)c2]2(a2+b2)2(a2b2+c4)a2+b2r2=2a2b2+(a2+b2)c2+ab4(a2+b2)c2(a2b2)2a2+b2r=2a2b2+(a2+b2)c2+ab4(a2+b2)c2(a2b2)2a2+b2

Commented by ajfour last updated on 25/Jun/19

Too good Sir. Thanks for confirming.

ToogoodSir.Thanksforconfirming.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com