Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 62869 by aliesam last updated on 26/Jun/19

y(dy/dx) − (y/(dy/dx)) = 2a    a is a real number

$${y}\frac{{dy}}{{dx}}\:−\:\frac{{y}}{\frac{{dy}}{{dx}}}\:=\:\mathrm{2}{a} \\ $$$$ \\ $$$${a}\:{is}\:{a}\:{real}\:{number} \\ $$

Answered by Hope last updated on 26/Jun/19

y((dy/dx))^2 −y=2a((dy/dx))  yp^2 −2ap−y=0  p=((2a±(√(4a^2 +4y^2 )))/(2y))  (dy/dx)=((2a±(√(4a^2 +4y^2 )))/(2y))  ((ydy)/(a±(√(a^2 +y^2 ))))=dx  t^2 =a^2 +y^2 →tdt=ydy  now ∫((ydy)/(a+(√(a^2 +y^2 ))))=∫dx →[considering + sign]  ∫((tdt)/(a+t))=∫dx  ∫((a+t−a)/(a+t))dt=∫dx  ∫dt−a∫(dt/(a+t))=∫dx  t−aln(a+t)=x+c  (√(a^2 +y^2 )) −aln(a+(√(a^2 +y^2 )) )=x+c    if cosider −ve sign  ∫((ydy)/(a−(√(a^2 +y^2 ))))=∫dx  ∫((tdt)/(a−t))=∫dx  ∫((a−t−a)/(a−t))dt=−∫dx  ∫dt−a∫(dt/(a−t))=−∫dx  ∫dt+∫((adt)/(t−a))=−∫dx  t+aln(t−a)=−x+c_1   (√(a^2 +y^2 )) +aln((√(a^2 +y^2 )) −a)=−x+c_1

$${y}\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} −{y}=\mathrm{2}{a}\left(\frac{{dy}}{{dx}}\right) \\ $$$${yp}^{\mathrm{2}} −\mathrm{2}{ap}−{y}=\mathrm{0} \\ $$$${p}=\frac{\mathrm{2}{a}\pm\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} }}{\mathrm{2}{y}} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{2}{a}\pm\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} }}{\mathrm{2}{y}} \\ $$$$\frac{{ydy}}{{a}\pm\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }}={dx} \\ $$$${t}^{\mathrm{2}} ={a}^{\mathrm{2}} +{y}^{\mathrm{2}} \rightarrow{tdt}={ydy} \\ $$$${now}\:\int\frac{{ydy}}{{a}+\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }}=\int{dx}\:\rightarrow\left[{considering}\:+\:{sign}\right] \\ $$$$\int\frac{{tdt}}{{a}+{t}}=\int{dx} \\ $$$$\int\frac{{a}+{t}−{a}}{{a}+{t}}{dt}=\int{dx} \\ $$$$\int{dt}−{a}\int\frac{{dt}}{{a}+{t}}=\int{dx} \\ $$$${t}−{aln}\left({a}+{t}\right)={x}+{c} \\ $$$$\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{aln}\left({a}+\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\right)={x}+{c} \\ $$$$ \\ $$$${if}\:{cosider}\:−{ve}\:{sign} \\ $$$$\int\frac{{ydy}}{{a}−\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }}=\int{dx} \\ $$$$\int\frac{{tdt}}{{a}−{t}}=\int{dx} \\ $$$$\int\frac{{a}−{t}−{a}}{{a}−{t}}{dt}=−\int{dx} \\ $$$$\int{dt}−{a}\int\frac{{dt}}{{a}−{t}}=−\int{dx} \\ $$$$\int{dt}+\int\frac{{adt}}{{t}−{a}}=−\int{dx} \\ $$$${t}+{aln}\left({t}−{a}\right)=−{x}+{c}_{\mathrm{1}} \\ $$$$\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:+{aln}\left(\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{a}\right)=−{x}+{c}_{\mathrm{1}} \\ $$$$ \\ $$$$ \\ $$

Commented by aliesam last updated on 26/Jun/19

thank you sir brilliant sol

$${thank}\:{you}\:{sir}\:{brilliant}\:{sol} \\ $$

Commented by Hope last updated on 26/Jun/19

(1/(2(√(a^2 +y^2 ))))×2y(dy/dx)+(a/((√(a^2 +y^2 )) −a))×(1/(2(√(a^2 +y^2 ))))×2y(dy/dx)=−1  ((y(dy/dx))/((√(a^2 +y^2 )) ))(1+(a/((√(a^2 +y^2 )) −a)))=−1  ((y(dy/dx))/(√(a^2 +y^2 )))((((√(a^2 +y^2 )) )/((√(a^2 +y^2 )) −a)))=−1  y(dy/dx)=−((√(a^2 +y^2 )) −a)  (dy/dx)=((−((√(a^2 +y^2 )) −a))/y)  y(dy/dx)−(y/(dy/dx))  ((−((√(a^2 +y^2 )) −a))/1)+(y^2 /((√(a^2 +y^2 )) −a))  ((y^2 −(a^2 +y^2 +a^2 −2a(√(a^2 +y^2 )) ))/((√(a^2 +y^2 )) −a))  =((2a((√(a^2 +y^2 )) −a))/((√(a^2 +y^2 )) −a))  =2a proved  so we can get...

$$\frac{\mathrm{1}}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }}×\mathrm{2}{y}\frac{{dy}}{{dx}}+\frac{{a}}{\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{a}}×\frac{\mathrm{1}}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }}×\mathrm{2}{y}\frac{{dy}}{{dx}}=−\mathrm{1} \\ $$$$\frac{{y}\frac{{dy}}{{dx}}}{\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:}\left(\mathrm{1}+\frac{{a}}{\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{a}}\right)=−\mathrm{1} \\ $$$$\frac{{y}\frac{{dy}}{{dx}}}{\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\left(\frac{\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:}{\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{a}}\right)=−\mathrm{1} \\ $$$${y}\frac{{dy}}{{dx}}=−\left(\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{a}\right) \\ $$$$\frac{{dy}}{{dx}}=\frac{−\left(\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{a}\right)}{{y}} \\ $$$${y}\frac{{dy}}{{dx}}−\frac{{y}}{\frac{{dy}}{{dx}}} \\ $$$$\frac{−\left(\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{a}\right)}{\mathrm{1}}+\frac{{y}^{\mathrm{2}} }{\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{a}} \\ $$$$\frac{{y}^{\mathrm{2}} −\left({a}^{\mathrm{2}} +{y}^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}{a}\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\right)}{\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{a}} \\ $$$$=\frac{\mathrm{2}{a}\left(\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{a}\right)}{\sqrt{{a}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{a}} \\ $$$$=\mathrm{2}{a}\:{proved} \\ $$$${so}\:{we}\:{can}\:{get}... \\ $$$$ \\ $$

Commented by mr W last updated on 26/Jun/19

very nice sir!

$${very}\:{nice}\:{sir}! \\ $$

Commented by Hope last updated on 26/Jun/19

thank you sir...

$${thank}\:{you}\:{sir}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com