All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 62908 by aliesam last updated on 26/Jun/19
∫arctan(x)xdx
Commented by mathmax by abdo last updated on 26/Jun/19
forallxfromRu→arctanuuisintegrableon]0,x]letf(t)=∫0xarctan(tu)uduwehavef′(t)=∫0xarctan(tu)du=byparts[uarctan(tu)]u=0u=x−∫0xut1+t2u2du=xarctan(tx)−12t∫0x2t2u1+t2u2du=xarctan(tx)−12t[ln(1+t2u2)]u=0u=x=xarctan(tx)−12tln(1+t2x2)⇒f(t)=∫0txarctan(ux)du−∫0tln(1+x2u2)2udu+C⇒∫0xarctan(u)udu=f(1)=x∫01arctan(ux)du−∫01ln(1+x2u2)2udu+Cx=0⇒C=0⇒∫0xarctan(u)udu=x∫01arctan(ux)du−∫01ln(1+x2u232udu...becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com