Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62937 by Prithwish sen last updated on 27/Jun/19

∫_0 ^(  x) (1/(1+x^2 )) dx

0x11+x2dx

Commented by mathmax by abdo last updated on 27/Jun/19

∫_0 ^x   (dt/(1+t^2 )) =[arctan(t)]_0 ^x  =arctanx .

0xdt1+t2=[arctan(t)]0x=arctanx.

Commented by Prithwish sen last updated on 27/Jun/19

thank you sir

thankyousir

Commented by Prithwish sen last updated on 27/Jun/19

thank you sir

thankyousir

Answered by peter frank last updated on 27/Jun/19

let x=tan θ→θ=tan^(−1) x  dx=sec^2 θdθ  ∫((sec^2 θdθ)/(sec^2 θ))  θ+c  tan^(−1) x+c

letx=tanθθ=tan1xdx=sec2θdθsec2θdθsec2θθ+ctan1x+c

Commented by Prithwish sen last updated on 27/Jun/19

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com