Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 62983 by hovea cw last updated on 27/Jun/19

If   tan 2θ tan θ = 1, then θ =

Iftan2θtanθ=1,thenθ=

Answered by Hope last updated on 27/Jun/19

tan2θ=cotθ=tan((π/2)−θ)  formula  [tanα=tanβ   α=nπ+β]  so 2θ=nπ+((π/2)−θ)  3θ=(((2n+1)π)/2)→ θ=(((2n+1)π)/6)

tan2θ=cotθ=tan(π2θ)formula[tanα=tanβα=nπ+β]so2θ=nπ+(π2θ)3θ=(2n+1)π2θ=(2n+1)π6

Commented by mr W last updated on 27/Jun/19

please check sir!  n=1: θ=(π/2) ⇒ but tan (π/2) → ∞ !

pleasechecksir!n=1:θ=π2buttanπ2!

Commented by Hope last updated on 27/Jun/19

yes sir...you r right...

yessir...yourright...

Answered by Hope last updated on 27/Jun/19

anothdr way  a=tanθ  ((2a)/(1−a^2 ))×a=1  2a^2 =1−a^2   a^2 =(1/3)→a=±(1/(√3))  tanθ=tan(π/6)  θ=nπ+(π/6)  tanθ=−(1/(√3))=tan(π−(π/6))  θ=nπ+((5π)/6)

anothdrwaya=tanθ2a1a2×a=12a2=1a2a2=13a=±13tanθ=tanπ6θ=nπ+π6tanθ=13=tan(ππ6)θ=nπ+5π6

Commented by mr W last updated on 27/Jun/19

good sir!  that is θ=nπ±(π/6)

goodsir!thatisθ=nπ±π6

Answered by MJS last updated on 27/Jun/19

tan 2θ =((2sin θ cos θ)/(2cos^2  θ −1))  ((2sin θ cos θ)/(2cos^2  θ −1))×((sin θ)/(cos θ))=1  ((2sin^2  θ)/(2cos^2  θ −1))=1  method 1  2sin^2  θ =2cos^2  θ −1  sin^2  θ −cos^2  θ =−(1/2)  1−2cos^2  θ =−(1/2)  cos^2  θ =(3/4)  cos θ =±((√3)/2)  method 2  ((1−cos 2θ)/(cos 2θ))=1  cos 2θ =(1/2)  ...

tan2θ=2sinθcosθ2cos2θ12sinθcosθ2cos2θ1×sinθcosθ=12sin2θ2cos2θ1=1method12sin2θ=2cos2θ1sin2θcos2θ=1212cos2θ=12cos2θ=34cosθ=±32method21cos2θcos2θ=1cos2θ=12...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com