Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 63065 by Enebeli Chinedu Vitalis last updated on 28/Jun/19

If I=∫_( 0) ^1  (dx/(√(1+x^4 ))) , then

$$\mathrm{If}\:{I}=\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}\:,\:\mathrm{then} \\ $$

Commented by Enebeli Chinedu Vitalis last updated on 28/Jun/19

thanks boss★★

$${thanks}\:{boss}\bigstar\bigstar \\ $$

Commented by mathmax by abdo last updated on 28/Jun/19

changement x^2 =tanθ give x =(tanθ)^(1/2)  ⇒I =∫_0 ^(π/4)    (1/(2(√(1+tan^2 θ))))(1+tan^2 θ)(tanθ)^(−(1/2)) dθ  = (1/2)∫_0 ^(π/4)     (√(1+tan^2 θ))(tanθ)^(−(1/2))  =(1/2) ∫_0 ^(π/4) (1/(cosθ (√((sinθ)/(cosθ))))) =(1/2) ∫_0 ^(π/2)  (dθ/(√(cosθsinθ)))  =(1/(√2)) ∫_0 ^(π/2)   (dθ/(√(sin(2θ)))) =(1/(√2))∫_0 ^π    (dt/(2(√(sint))))                                      (2θ=t)  =(1/(2(√2))) ∫_0 ^π      (dt/(√(sint)))  changement  tan((t/2)) =u give  ∫_0 ^π   (dt/(√(sint))) =∫_0 ^∞         ((2du)/((1+u^2 )(√((2u)/(1+u^2 ))))) =(√2) ∫_0 ^∞       (du/((√u)(√(1+u^2 ))))  =_((√u)=α)     (√2)∫_0 ^∞    ((2αdα)/(α(√(1+α^4 ))))  =2(√2)∫_0 ^∞     (dα/(√(1+α^4 ))) ⇒I =∫_0 ^∞     (dx/(√(1+x^4 )))  I =∫_0 ^1   (dx/(√(1+x^4 ))) + ∫_1 ^(+∞)    (dx/(√(1+x^4 ))) ⇒ ∫_1 ^(+∞)   (dx/(√(1+x^4 ))) =0....be contnued....

$${changement}\:{x}^{\mathrm{2}} ={tan}\theta\:{give}\:{x}\:=\left({tan}\theta\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\Rightarrow{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} \theta}}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)\left({tan}\theta\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {d}\theta \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\left({tan}\theta\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{1}}{{cos}\theta\:\sqrt{\frac{{sin}\theta}{{cos}\theta}}}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{d}\theta}{\sqrt{{cos}\theta{sin}\theta}} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{d}\theta}{\sqrt{{sin}\left(\mathrm{2}\theta\right)}}\:=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dt}}{\mathrm{2}\sqrt{{sint}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\theta={t}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{dt}}{\sqrt{{sint}}}\:\:{changement}\:\:{tan}\left(\frac{{t}}{\mathrm{2}}\right)\:={u}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dt}}{\sqrt{{sint}}}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\sqrt{\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}}\:=\sqrt{\mathrm{2}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{du}}{\sqrt{{u}}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }} \\ $$$$=_{\sqrt{{u}}=\alpha} \:\:\:\:\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}\alpha{d}\alpha}{\alpha\sqrt{\mathrm{1}+\alpha^{\mathrm{4}} }}\:\:=\mathrm{2}\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{d}\alpha}{\sqrt{\mathrm{1}+\alpha^{\mathrm{4}} }}\:\Rightarrow{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}\:+\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}\:\Rightarrow\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}\:=\mathrm{0}....{be}\:{contnued}.... \\ $$

Commented by mathmax by abdo last updated on 28/Jun/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com